Evolution Query Builder

1 Query Builder

1.1 What is Query Builder
1.2 Window Layout
1.2.1 Query Structure Area
1.2.2 All Tables Area
1.2.3 Work Area

1.2.4 Tab Area

1.3 Buttons

1.4 Query Concepts
1.4.1 Tables and Buffers
1.4.2 Conditions

1.4.3 Expression Editor
1.4.3.1 Field Tab

1.4.3.2 Constant Tab
1.4.3.3 Function Tab
1.4.3.4 Button Panel
1.4.4 Keys and Joins
1.4.4.1 Keys

1.4.4.2 Joins

1.4.5 Table Parameters
1.4.6 Subqueries

1.4.7 Unions

1.4.8 Useful Information and Resources

3/15/2007 -1



Evolution Query Builder

1 Query Builder
1.1 What is Query Builder

Query Builder is the tool used to retrieve data from Evolution databases. It is a graphical tool that allows the user
to drag and drop tables, buffers and fields to create SQL queries. Those queries can include inner, left and right
outer joins and unions. Data returned by the query can be sorted and formatted inside Query Builder. New
columns can be created that are calculated based on data returned by the query. This document is an
introduction to Query Builder and its functionality.

3/15/2007 - 2



Evolution Query Builder

1.2 Window Layout

The Query Builder window has four main areas:

Query Structure Area (A)
All Tables Area (B)

Work Area (C)

Tab Area (D)

|vX |30 (REQOG B[ HF X[m0

() Whaerds Showing Fields | Sorting | Misc | SOL | Data Resur|
S g Fe (e [Fedfiss  [iae |

3/15/2007 - 3



Evolution Query Builder

1.2.1 Query Structure Area

The Query Structure Area shows the layout of the query. There may be multiple levels of a report’s query
depending on the data that needs to be reported on. If there are multiple levels of the query (referred to as
subqueries, to be explained in section 1.4.5), the Query Structure Area will show a tree structure of that query, as

shown below:

Query Stucture

E--E ain Statement
=R =]

E\D Payroll

[ Pr_Check_Line_Locals
5 Pr_Check_Lines

1 Pr_Check_Lines_Distr
5 Pr_check_Locals

5 Pr_tCheck_States

[ Pr_cCheck_Sui

5 Pr_Mizcellaneous_Checks
1 Pr_Reports

5 Pr_Reprint_Histary

5 Pr_Reprint_History_Detail
2 Pr_Scheduled_E_Ds

1 Pr_Scheduled_Evert

[ Pr_Scheduled_Evert_Batch
5 Pr_services

5 whr

[ wPr_Check

5 wPr_Check_Local

[ wPr_Check_State

B wPr_Check_sui

5 wPr_Checklines

[ wPr_Federal_Exempts
E wPr_Local_Exempts

=

SubQuery 1

RS T

=10l x|

Showing Fields | Serting | Mise | 50L | DataResut |

Fieturns Vear to Date Check Lines Amount by
employes for the latest selected payrall.

Field

| Twpe | Field Alias

| _Tatle

In cases where there are multiple levels in a query, the Work Area and Tab Area will show what is inside the
selected subquery. In the example above, the top level of the query is Main Statement. Below that, are two
subqueries, each having it's own pair of subqueries. With the Main Statement selected, based on what is shown
in the Query Structure Area, the Work Area should show two subqueries, t1 and t2, as it does. If the t1 subquery
in this example were selected, the Work Area would show its two subqueries, t3 and t4.

3/15/2007 - 4



Evolution Query Builder

1.2.2 All Tables Area

The All Tables Area shows all tables and buffers and their corresponding fields that are available for use in the
query. The tables are split into different folders based on the type of data stored in each table. Tables that
contain payroll data may be found in the Payroll folder. Tables that contain employee information are located in

the Employee folder.

For a table or buffer to be used in a query, it must be dragged from the All Tables area and dropped into the Work
area. If a table is open in the Work area, the All Tables area will become the Child tables of: <selected table>
Area, as shown below. The Child tables of: <selected table> will show the tables that reference the key field of
the selected table, in the case below, pr_check_nbr.

VX zHd BFIQo®m DS

"13)(|I:I|B¢c|

Query Shucture

----- f] Main Statement

Child tables of: Pr_Check

E|[:| Company

-] Co_Bank_Account_Register
Employes

E Ee_Time_Off_Accrual_Oper
Payroll

[ Pr_theck_Lines

[ Pr_theck_Lines_Distr

[ Pr_theck_Locals

= Pr_check_States

5 Pr_check_Sui

[ wPr_tCheck

[ wPr_tCheck_Lacal

[ wPr_Check_State

[ wPr_check_Sui

1 wPr_tChecklines

[ wPr_Federal_Exempts

[ wPr_Local_Exempts

H-E wPr_State_Exempts

Pr_Check

Cr_Check_Federal...
Cr_Check_Medicare
Or_Check_Oasdi
COvertide_Check_...
Payment_Serial_N...
E4Pr_Batch_Mbr

C Il
4 Pr_tbr
Prorate_Schedule...
Salary
Statuz_Change_D...
Tax_At_Suppleme...
Tax_Frequency

Float
Flost
Float
Blak
Integer
Integer
Integer
Integer
String
Flost
Date
String
String

1

Cr_Check_Federal... String - I

J

AND

Showing Fields |Sorting| Misc I SOL I Data Result

Field

| Type

| Field Alias

| Table

3/15/2007 - 5



Evolution Query Builder

Each table and buffer in the All Tables or Child tables of: <selected table> Areas can be further expanded to view
the columns that exist in that table.

=10lx
VX dH 2@|Q0 % Ba 0@ %|0]5 0 x|

Guery Stucture

E tdain Statement

Ee_Rates

All Tables
-7 Ee_Dependents_Cobra ;I
[ Ee_Dependents_Cobra_Pmt

[ Ee_Direct_Deposit

] Ee_Emergency_Cortacts

[ Ee_Locals

B Active_Record

= % Changed_By

= JE Co_Branch_Mar

-4 Co_Department_Mor

= JE Co_Division_Mbr

-4 Co_Hr_Salary_Grades_Mor
[ Co_Jobs_Mbr

-4 Co_Team_Mar

% Co_Workers_Comp_Mbr Field | Type | Field Alias | T able

--E Creation_Date

B Ee_Mbr

-] Ee_Rates_hor

[ Etfective_Date

-.-[= Primary_Rate

Rate_~Amaunt

--[E Rate_Mumber

e_ncheduled £ Ds -

H-5] Ee_States

/-7 Ee_Time_Off_Accrual

#-[5] Ee_Time_Off_Accrual_Oper

-7 Ee_Work_Shifts

£ vEe

1[5 vEe_Checklines

H-[] vEe_Fed_smounts

7] vEe_Local_smourts

#-[71 vEe Locals LI

Shawing Figlds | Snrtingl Misc I sS0L I D ata Result

e 0 B e B B e W O W B

To the left of each column name, there is an icon. That icon helps describe the column. There are three different
icons that can appear there, shown below. After each icon is a description of what that icon means to that field.

= This is a normal column used to store data relevant to this table.
This is the key of the table. This column uniquely identifies each current record in this table.
% The data in this column references the key of a different table. This column may be dragged and dropped

from the table in the Work Area to another part of the work area to add the table whose key this is, joining the two
tables on that column.

3/15/2007 - 6



Evolution Query Builder

1.2.3 Work Area

The Work Area is where the query is built. Tables and buffers are dragged from the All Tables Area into the
Work Area for use in the query. If there is a field that is needed in the query for any reason (joining, sorting,
calculating), the table or buffer in which that field is found must be dropped into the Work Area.

2 Query Builder
|vX|@E @R Q0H BN GEX 0 hBm
‘Query Stucture —_—

[ T72] Mai Statement |-

Showng Fiekds | Sorting| Mise | SOL | Data Resut|

| Field | Type | FieldAlas | Table |

3/15/2007 - 7



Evolution Query Builder

In the previous screen, the Changed_By field has the foreign key icon to the left of it. That means that the field
can be dragged from the table in the Work Area into another part of the work area to add the table whose key
value is stored in that field of the selected table. The result of this action is shown below.

2 Query Builder

|vX @R PERIQDH(BA|LDE X 0B e

Query Structure

[~ 17] Main Statement

Cl_Person

Showing Fiskds | Sorting | Mise | SOL | Data Resut |

#- ) System

| Field

[Type [ Fieid Alias [ Table |

The Sb_User table was added to the query by dragging and dropping the Changed_By field from the Cl_Person
table in the Work Area to an empty part of the Work Area. Both tables are now joined on the appropriate field —
Changed_By in CI_Person and Sb_User_Nbr in Sb_User. The Changed_By field in the CI_Person table
stores the internal user number (Sb_User_Nbr) of the person who last changed each record in the table. This is
true for almost all tables in the Evolution database.

3/15/2007 - 8



1.2.4 Tab Area

The Tab Area has five tabs:

Showing Fields
Sorting

Misc

SQL

Data Result

Evolution Query Builder

In subqueries (any query that has a parent query), the Showing Fields Tab must include any field that needs to
be available to the parent query. In the top-level query, the Showing Fields tab must include any field that needs
to be available to the Report in which the query exists. If this is a query outside of a report, the Showing Fields
tab in the top-level query needs to include all fields to be shown in the result when the query is run from the Misc -
Query Builder window, or from the top level of the query inside Query Builder.

ey maider =P

|vX|2d | PF| Q0 &30

]ﬁj@x|ﬂ\a¢c|

Quen Structure
{1 Main Statement

Child tables of: CI_E_Dz
-] Cliert

D Company

[_] Employes
I:I Payraoll

Active_Recard String
Annual_Maximum Flost
Spply_Betore_Texes String
%Changad_ay Irteger
IaCI_Spar‘tysickpayadmin_Nbr Irteger
IaCI_Elenef'rts_Nbr Irteger
CI_E_D_Groups_Nbr Integer
ELCLE_Ds_Mbr Irteger
%CI_Pension_Nbr Integer
%CI_Uninn_Nbr Irteger
Creation_Date Date
Custom_E_D_Code_Number String
I-E|Default_lCI_Agency_rxll:u Integer
Default_Hours Flost
Description String
E_D_Code_Type String
Ee_Exempt_Excld_Medicars String
Ee Exemiot Exclude Eic Strinc LI

B~ AND
i Trim(t1 .Custom_E_D_Coce_Mumber) = WA

Showing Fields lSortingl Misc | SoL | Data F!esultl

Field | Type | Field Alias | Tablz |
CI_E_Ds_Mbr Integer t
Custom_E_D_Code_Mumber String 1
Active_FRecord String 3
Creation_Date Date t1
Effective_Date Date t1

3/15/2007 - 9



Evolution Query Builder

The Sorting Tab is only available at the top level of the query. Using this tab, the result returned by the query
can be sorted on any fields on the Showing Fields tab. The results can be sorted on the selected fields in
ascending or descending order.

@~ Query Builder

X |zhd BE Qo3 H

BRI

Query Structurs
= Ej Main Statement

Child tables of: C| E_Ds
-] Cliert

: El CompEny
E| Employes
CI Payrall

Active_Record
Annusl_Maximum
Apply_Betore_Taxes
Changad_Ely
CI_3par‘tys|ckpayadm|n_Nbr
401 Benefits_Hbr

FE4 01 E_D_Groups_Mor
E5C1LE_Ds_Nbr
%CLPEHSiUI‘I_Nbr
E=4¢I_Union_tor
Creation_Date
Custom_E_D_Code_Number
%Defauh_Cl_Agency_Nbr
Default_Hours

Description
E_D_Code_Type
Ee_Exempt_Excld_Medicare
Ee Exemit Exclude Eic

String
Flost
String
Integer
Integer
Irteger
Irteger
Integer
Integer
Integer
Date
String
Irteger
Flost
String
String
String
String

=]

g [ 3]

B AND

Tritm(t1.Custom_E_D_Code_RMumber) = KX

Showing Field

Sorting ||Mise |SE!L |DataF|esuIt|

i
| Direction |

m E D Lode Mumber

3/15/2007 - 10



Evolution Query Builder

The Misc Tab has a check box labeled “Result should be distinct by selected fields”. If this check box is checked,
the result returned by the query will not include duplicate rows of data. Each row will be unique. For example, a
query selects check date and employee from the Pr, Pr_Check and Ee tables. If an employee has multiple

checks for a single check date, the query would return different results with the check box unchecked versus
checked.

Employee 1 has three checks in payrolls check dated 2/16/2005. With the box unchecked, a row of data would
be returned for each check. In this example, the result would be three rows of data for that employee and check
date. With the box checked, all duplicates are removed from the result, leaving only unique rows of data. In this
example, the result would include a single row of data for employee 1 for the 2/16/2005 check date, regardless of
how many checks this employee had in payrolls check dated 2/16/2005.

All other settings on this tab should be ignored.

=
[vx sl PP Q0@ Ba 08 X |06 ®e
Query Structurs

Ej Main Statement

CLE_Ds 1
Active_Record String
Annusl_Maximum Flost
Lpply_Betore_Tsxes String
Changad_Ely Integer
CI_3par‘tys|ckpayadm|n_Nbr Integer
%CI_EIenef'rts_Nhr Irteger
%CI_E_D_Grnups_Nhr Irteger
E5C1LE_Ds_Nbr Integer

Child tables of: CLE_Ds FE4C1_Pension_hor Integer

D Cliert I{?H:I_Union_hlk:nr Integer

] company = Creation_Date Diate

-] Employes Custom_E_D_Coce_Number String

D Payroll %Defauh_Cl_Agency_Nbr Integer
Default_Hours Flost
Description String
E_D_Code_Type String
Ee_Exempt_Excld_Medicare String
Ee Exemot Excluce Eic String j
B AND

H Tritm(t1.Custom_E_D_Code_RMumber) = KX

Showing Flaldsl Sorti Mise oL | Data Flesultl

™ Result should be distinct by selected fields

Statement Type SELECT Vl Buffer's Table Mame I vl

Macros [Custom Text)

SELECT |

FROM |

WHERE |

ORDEREBY |

3/15/2007 - 11



Evolution Query Builder

The SQL Tab shows the SQL that is written by Query Builder as the query is being built. This tab is for viewing
purposes only. The SQL on this tab cannot be changed.

@~ Query Builder

X |zhd BE Qo3 H

BRI

Query Structurs
= @ Main Statement

Child tables of: CI_E_Ds
[ Cliert

El CompEny

E| Employes

C| Payrall

Active_Record String
Annusl_Maximum Flost
Lpply_Betore_Tsxes String
Integer

|_Spartysickpayadmin_Mor Integer
%CI_EIenef'rts_Nhr Irteger
%CI_E_D_Grnups_Nhr Irteger
E5C1LE_Ds_Nbr Integer
%CLPEHSiUI‘I_Nbr Integer
%CI_Union_Nbr Integer
Creation_Date Diate
Custom_E_D_Code_Number String
%Defauh_Cl_Agency_Nbr Irteger
Default_Hours Flost
Description String
E_D_Code_Type String
Ee_Exempt_Excld_Medicare String
Ee Exemot Excluce Eic String j
B AND

H Tritm(t1.Custom_E_D_Code_RMumber) = KX

g [ 3]

ARETECT

Shaowing Flaldsl Sortlngl MlscI soL IIJata Flesultl

t1.Cl_E_Ds Mbr,
tl.Custom E_D_Code Number,
tl.Aietive Record,
tl.Creation Date,
tl.Effective_Date
FROM
Cl_E Ds(Null] ¢l
WHERE
Trimitl.Custom E_D_Code_ MNuwber) = 'ZXX'
ORDER BY
2
K —

|»

3/15/2007 - 12



The Data Result Tab shows the data returned by the level of the query selected in the Query Structure Area. If
the top level of the query is selected, it will show the data returned by the entire query. This tab will show a
column of data for each field on the Showing Fields tab.

@~ Query Builder

X |zhd BE Qo3 H

Evolution Query Builder

BRI

Query Structurs
= Ej Main Statement

Child tables of: C| E_Ds
[ Cliert

D CompEny

[:l Employes

D Payrall

Active_Record
Annusl_Maximum
Apply_Betore_Taxes
Changad_Ely
CI_3par‘tys|ckpayadm|n_Nbr
401 Benefits_Hbr

FE4 01 E_D_Groups_Mor
E5C1LE_Ds_Nbr
%CLPEHSiUI‘I_Nbr
E=4¢I_Union_tor
Creation_Date
Custom_E_D_Code_Number
%Defauh_Cl_Agency_Nbr
Default_Hours

Description
E_D_Code_Type
Ee_Exempt_Excld_Medicare
Ee_Exempt_Excluce_Eic
Ee_Exempt_Exciude_Federal

Ee_Exempt_Exciude_Oasdi

String
Flost
String
Integer
Integer
Irteger
Irteger
Integer
Integer
Integer
Date
String
Irteger
Flost
String
String
String
String
String
String

g [ 3]

Shawing Flaldsl Sortlngl Mise | SoL

Data Result

3 EIL_E_DS_NBH' CUSTOM_E_D_CODE_MUMBER|ACTIVE_RECORD|CREATION_DATE EFFECTIVE_DATE ﬂ
» JEM P 1A/200 1A/2001

JEM P 1A/200 10/20/2001 24019 ...

JEM P 97/2002 2:03:41 P 9/17/2002 20341 P

JEM P 1241842002 5:10:40 ... 12/18/2002 5:10:40 ...

JEM P 12/23/2002 4:45:03 .. 12/23/2002 4:45:03 ...

JEM G 4/3/2002 171:16:50 AM 4/3/2003 11:76:50 b

4/E02 P 1A1/2001 141/2001 _I
PLAM: Sort(T1)
COST =148
TIME =0 msec

3/15/2007 - 13




Evolution Query Builder

1.3 Buttons

Inside the Query Builder window is a panel of button located in the upper left corner by default. From left to right
(as shown below), those buttons are:

Save & Close

Cancel & Close

Load Query from File
Save Query to File

Add Subquery

Delete Subquery

Search Field/Table (Ctrl+F)
Content of Table

SQL Data Result (F9)
Hide/Show Panels (Ctri+H)
Wizard View

VX EE PFEIQOHIBDN

Save & Close — Saves any changes you made to the query and closes the Query Builder window.

Cancel & Close — Closes the Query Builder window without saving any changes made to the query since the
Query Builder window was opened.

Load Query from File — Opens the Load Query from File dialog box to select a saved query file to open in Query
Builder. Query files have the extension RWQ.

Save Query to File — Opens the Save Query to File dialog box to save the current query open in Query builder to
a file for later use. If a subquery is selected in the Query Structure Area, this function will save only what is inside
of that subquery. To save the entire query, make sure the top level of the query is selected before clicking this
button.

Add Subquery — Adds either a subquery, parent query or parent query union to the part of the query currently
selected in the Query Structure Area.

Delete Subquery — Deletes the part of the query currently selected in the Query Structure Area.

Search Field/Table (CtrI+F) — Opens the Find dialog box. A buffer, table or field name may be entered here to
be searched for in the All Tables Area by clicking the Find Next button in the Find dialog box.

Content of Table — Shows all current records in the table or buffer selected in the All Tables Area.

SQL Data Result (F9) — Runs the part of the query selected in the Query Structure Area, populating the Data
Result tab in the Tabs Area.

Hide/Show Panels (Ctrl+H) — Toggles visibility of the Query Structure, All Tables and Tabs Areas. This button is
useful when working with several tables in the same level of a query, as it makes the entire Query Builder window
the Work Area.

Wizard View — Toggles between real and user-friendly alias names of database tables and fields in Query
Builder. For example, in non-Wizard view, the company table is called CO. In Wizard view, it is call Company.

3/15/2007 - 14



Evolution Query Builder

1.4 Query Concepts

This section will explain in detail the following basic concepts and objects needed to build a query:

Table and buffers
Conditions

Joins

Subqueries

1.4.1 Tables and Buffers

Tables and buffers can be dragged and dropped from the All Tables area to the Work area for use in a query.
The ways in which they can be used are explained later.

Tables — These are permanent storage areas for data used in Evolution. Each table has columns and rows.
Each column stores a different type of data, like employee name, company state or federal deposit frequency.
Each row stores a single instance of each column. All data on that row is related. For example, there is a row in
the Employee table (non-wizard name Ee) for each employee. Each employee has a custom employee code,
pay frequency and hire date. There are columns in the Employee table for each of these three types of data —
custom employee code, pay frequency and hire date — as well as several other columns directly related to the
employee.

Each employee has a single row in the Employee table. Therefore, any other type of data that would exist only
once for an employee may also be stored in the Employee table in the row in which that employee’s data resides.
Each employee has only one home division, branch, department or team, so these pieces of data are also stored
in the Employee table in the relevant row. An employee may have multiple rates, states or scheduled E/Ds.
Because of that, it doesn’t make sense for this data to be stored in the Employee table. Each of these kinds of
data has its own table, because each employee rate, state and scheduled E/D can be unique and customized for
each employee.

Buffers — These are temporary storage areas used in Query Builder and Report Writer to prepare sets of data for
use in a query or report. Buffers have the same basic column/row structure that tables have. However, they may
contain pieces of data from multiple tables, calculated columns or constants.

Buffers are defined outside of Query Builder. After the buffer is defined, a query runs. The buffer is then
populated with selected data from that query. This process can happen multiple times to populate a single buffer.
In the case of multiclient reports, a query is run on the first company, the data required for the report is written to
the buffer, the query is run on the next company, that company’s data is written to the buffer, and the process
repeats until the query is run on the last company and that company’s data is written to the buffer.

After the buffer is created, it can be made available for use in Query Builder. Its content may be viewed by

selecting it in the All Tables area and clicking on the Content of Table button. It may be used in query builder in
the same way that tables are used whether it contains data or not.

3/15/2007 - 15



1.4.2 Conditions

Evolution Query Builder

After a table or buffer has been dropped into the Work area, conditions may be created using columns in that
table or buffer. A condition is a statement that will be either true or false for each row of data in the table.
Conditions are used to limit the data returned by a query. If the condition is true for a row, that row’s data will be

included in the query. If the condition is false for a row, that row will be excluded from the query.

Each condition has three pieces - a left part, a compare operation and a right part. They are defined as follows:

Left and Right Parts — These are the values being compared. They can be calculated, constants or column

values straight out of a table or buffer.

Compare Operation — This defines how the left and right parts are being compared. There is a variety of

compare operations, shown below:

Condition Constructor
—Left Part | [ Compare Operation
Expression

1.Check_Date

Right Part
Espression

Check |

b=

=

LIKE
BETWEEN
IN

EXISTS

1S NULL

< — Left part is less than right part.

= — Left and right parts must be equal.
<> — Left and right parts must not be equal.
> — Left part is greater than right part.

>= — Left part is greater than or equal to right part.
<= - Left part is less than or equal to right part.

3/15/2007 - 16



Evolution Query Builder

LIKE — Left part includes the string expression in the right part. With the Partial at Beginning Matching option
selected, the left part must start with what is in the right part. With the Partial Anywhere Matching option, the
left part must include what is in the right part anywhere from beginning to end. With the Case-sensitive
checkbox checked, the condition will be true only if the case of the left and right parts matches. So, if the left
part was the string ‘ABC123’ and the right part was ‘AB’, this would be a match because the string ‘AB’ exists
in both parts and is uppercase in both places. If the right part was ‘Ab’ however, this would not be a match
because the left part includes the string ‘AB’ with both letters being uppercase, but the second letter of the
right part is the lowercase letter ‘b’. In this example, unchecking the Case-sensitive checkbox would make

this a match.
—Left Part — Compare Operation
Espression
LIKE v

1.Check_Date
[ Inverse compare result (NOT)

|

Right Part

rMatching———— String Expression

(¢ Partial at Beginning
(" Partial Anywhere

[v Case-sensitive

Check , oK

Cancel

BETWEEN — Left part is greater than or equal to the initial expression of the right part, and less than or equal

to the final expression of the right part.

Condition Constructor i
—Left Part — Compare Operation
Espression

1.Check_Date

[ Inverse compare result (NOT)

|

Right Part

Initial Expression Final Expression

AND

Cancel

Check , oK

3/15/2007 - 17



Evolution Query Builder

o IN — Left part is equal to some value in a list of values defined in the right part.

X
e T
t1.Check_Date

[ Inverse compare result (NOT)

~ Right Part

List of values

Edit Item

it

Checkl 0K | Cancel |

e EXISTS - The subquery selected in the left part returned a result.

5
—Left Part Compare Operatio

sUBuer RN -] | [6To =l

[ Inverse compare result (NOT)

~Right Part

Checkl 0K | Cancel |

e IS NULL - Left part is null.

|
~Left Part Compare Operation |
Espression
t1.Check_Date IS NULL v

[ Inverse compare result (NOT)

—Right Part

Check I 0K Cancel

3/15/2007 - 18



Evolution Query Builder

By dropping a specific column into the Condition area of a table, Query Builder will assume that this column is to
be used as the left part of the condition. After the compare operation is selected in the dropdown, the next step is
to define the right part. This is done by double-clicking in the white box located in the Right Part section of the
Condition Constructor window. This will cause the Expression Editor window to appear. This window is used to
define a value to be used for comparison in this case. It may also be used in the Showing Fields tab to define a
field beyond just showing a value stored in a table or buffer column. The Expression Editor window will be further

explained in the next section.

3/15/2007 - 19



Evolution Query Builder

For example, the query is gathering payroll data, but only for a specific check date range. A condition may be

created that finds only data related to payrolls with check dates within a specified date range. The steps to create
that condition are as follows:

e Drag and drop the column from the table in the Work area down to the bottom of that table’s Condition area.
This is the area at the bottom of the table in the work space where the word “And” or “Or” is seen. This will
only be visible while the table is expanded in the Work area. If the table is expanded and it is still not visible,
move the mouse pointer over the bottom border of the table window, then find the two arrows pointing up and
down with two horizontal lines between, click and drag up. The Condition area should now be visible.

—Iofx|
[ vX aH PFQ0HBDH| HE XD B

Cuery Structure
-] Main Staternent

Active_Record String
Actual_Cal_n_Date Diate
Approved_By_Finance String
Approved_By_Management String
Approved_By_Tax String
%Changed_Ely Irteger
Check_Date Drate
Check_Date_Status Sring
=4 Ca_Mar Irteger
Combine_Fram_Run Iriteger
Combine_Runs String
Combine_To_Run Integer
%Cr_Approve_Sb_Usar_Nbr Irteger
Cr_Motes Blok
Crestion_Date Diate
Efective_Date Date
Exclude_401k_Only String
Child tables of: Pr Exclude_~ch arlng

B[] Company
E-[C] Employes
-] Payrall
-] Wizards

Shawing Fields |Snrling| Misc I SOL I Data Result

Field | Type | Field Aliaz | Table |

3/15/2007 - 20



Evolution Query Builder

o After the column is dropped into the Condition area, the Condition Constructor window will appear, shown
below. The compare operation needs to be changed to BETWEEN.

Condition Constructor x|

~Left Part Compare Operation
Expression
t1.Check_Date BETWEEN =]
e
>
¢ ||
—Right Part 5 B
% : =
Initial Expression Final LIKE i
EXISTS
AND 1S NULL

Check l (1] Cancel

e Clicking in the Right Part Initial Expression box will open the Expression Editor window, shown below. This is
where the beginning date of the date range is to be entered. To do that, select Date in the Type dropdown
and enter a date in the format shown below in the Value box. Pressing Enter or Return on the keyboard with
the cursor in the Value box will put the date into the Expression box above. Click OK.

Expression Editor 5|

1 Expression
Field  Constant IFunctianI WX o+ - e (.)
Type [Date | Value [3/1/2005

Clear Check OK Cancel

3/15/2007 - 21



Evolution Query Builder

At this point, the Condition Constructor window should be visible, the Right Part Initial Expression box
populated with the date entered in the prior step. The same steps should be followed to set the ending date

of the date range. The only difference is that this time, the Right Part Final Expression box should be clicked
to bring up the Expression Editor window.

Condition Constructor

—Left Part

E

Espression

Compare Operation——

t1.Check_Date

[ Inverse compare result (NOT)

“Right Part

Initial Expression

Final Expression

34172005

AND

Check I

oK Cancel

After those steps are taken for the Final Expression, the window should look like this. When it does, click OK.

Condition Constructor

£

~Left Part Compare Operation

Espression

t1.Check_Date

[ Inverse compare result (NOT)

~Right Part

Initial Expression Final Expression

3172005 4/30/2005

AND
Check 0K Cancel

3/15/2007 - 22



Evolution Query Builder

At this point, the condition has been created. The condition will be visible at the bottom of the table in the

Work area, shown below.

(Coquerypulder . = £

| X |Esd BE | Qo@nmBa

Cluery Structure
-] Main Statement

EEEIEIES T

Active_Record
Actual_Call_in_Date
Approved_By_Finance
Approved By Managemernt
Approved_By_Tax
%Changad_Ely

Et Check_Date
Check_Date_Status

=4 Co_Mor
Combine_From_Run
Caombine_Runs
Combine_To_Run
%Cr_ApprDve_Sb_User_Nbr

String
Intecier
Intecer
String
Intecyer
Intecer

- AND

t1 Check_Date BETVWEEN '3M 2005' AND '4/30/2005

Child tables of: Pr
Cl Company
-] Employes
Cl Payrol
B Wizards

Shewing Fields | Sortingl Misc I SoL | Data Result

Field

[ Tupe

3/15/2007 - 23



Evolution Query Builder

1.4.3 Expression Editor

The Expression Editor is used to by the Condition Constructor and in the Showing Fields tab to define conditions
and to define what a field on the Showing Fields tab will show. Conditions were explained in the previous section.
This section will show the Expression Editor in relation to the showing fields tab specifically. However, the ideas
explained here may also be used in the Condition Constructor window.

The Condition Constructor window, shown below has three main areas:

e Expression Box
e Tab Area
o Button Panel

Expression Editor |

 Expression

Clesr |  Check | oK | cancel |

The Expression Box shows the current expression that has been built using the various features and
functionality of the Tab Area.

The Tab Area is where the pieces of the expression are selected. It is made up of 3 tabs:

e Field
e Constant
e Function

Regardless of tab, when the expression part is ready to be inserted into the Expression Box above, the Insert

button is clicked to insert the part from the Tab Area into the Expression Box. The value from the Tab Area will
always be inserted into the current cursor position of the Expression Box.

3/15/2007 - 24



Evolution Query Builder

1.4.3.1 Field Tab

The Field Tab allows the user to select a table, and then a field within that table to insert into the expression. The
table and field chosen must exist in the current level of the query in order to be available for selection here. With
the table and field selected here, the expression part is ready to be inserted into the Expression Box.

Expression Editor x|
~Eupression
t4.Check_Date

Field | Constant | Function | ><. + -+« /7 () LI

L2l Check_Date

Check_Date_Status String

FHCo_Nbr Integer

= Combine_From_Run Integer

=3 Combine_Runs String

[ Combine_To_Run Integer

Ecr_Approve_Sh_User_Nbr Integer

E Cr_Notes Blob

(= Creation_Date Date

i Effective_Date Date

[E=N Eovmts sndn A0 b ™mdes i
Clear Check oK | cancel |

3/15/2007 - 25



Evolution Query Builder

1.4.3.2 Constant Tab

The Constant Tab allows the user insert a constant (unchanging value) into the Expression Box. For every
constant, a type must be selected from the Type dropdown. The selected type will drive how the value of the
constant is to be defined. For example, if Integer is selected as the type, the value of the constant must be a

whole number, negative of those numbers or 0 (...-2, -1, 0, 1, 2...).

Expression Editor x|

- Expression

Field  Constant IFunmion] X + - = [/ () L.]

rType :]

—_—

Date
Float
Integer
Sting
Lookup
Parameter
Null

True
False

Clear Check OK Cancel

The following is a description of each type.

Date — Date formatted as day/month/year. The year may be either a 2- or 4-digit year.

Float — Number, possibly with decimal positions.

Integer — Number with no decimal positions.

String — Value made up of any combination of numeric, alphabetic or punctuation characters. Values of this
type will always be enclosed in single quotes.

Lookup — Special type that shows a list of valid values for a single table field located in the Left Part
Expression box. For example, if the Left Part Expression box has the Check_Date field from the Pr table,
selection the Lookup type in the Right Part Expression box’s Expression Editor will show a list of check dates
that exist in the current company.

Parameter — Special type only for use in queries that are part of Report Writer or Report Master reports. Not
for use inside Report Writer Wizard reports. Used to pass values from Report Writer or Report Master into
Query Builder for use in conditions and the Showing Fields tab. For example, there is a parameter in Report
Master called Payrolls that is part of one of the report templates. That parameter stores a list of payrolls
selected on the input form of the report at runtime. That parameter may be used in queries inside this report
to create a condition where the key value of the Pr table, Pr_Nbr, is equal to the Payrolls parameter, filtering
out all payrolls other than those selected.

Null — Empty value.

True — Boolean value True. Can be used in function that require boolean parameters. Can also be used to
as the left or right part of a condition to filter based on whether a condition in the other part is true.

False — Boolean value False. Can be used in function that require boolean parameters. Can also be used to
as the left or right part of a condition to filter based on whether a condition in the other part is false.

3/15/2007 - 26



Evolution Query Builder

If the Date, Float, Integer or String types are selected, the Value box will appear. After the value is entered in the
Value box, Enter or Return may be pressed on the keyboard to insert the constant into the Expression Box.

|
—Expression
: " :
Field Cnnmlpmm| BX + - = R

Type [Date =] | Value | |

Clear Check oK Cancel

If the Lookup type is selected, a grid will appear below the Type dropdown with a list of valid values for the Left
Part Expression. The item selected may be double-clicked on to insert it into the Expression Box.

Expression Editor x|

—Expression

Field Cnnm'chtionl WMX o+ - = 7 (LI

Tope EE -

?|Check Date

B[1/372003

_|1110/2003

[1/15/2003

1/17/2003

_[1/22/2003

_[1/31/2003

~|2/7/2003

_|2nase003

|2/15/2003

2/21/2003 =]

Clear Check 0K | Cancel |

3/15/2007 - 27



Evolution Query Builder

If the Parameter type is selected, the Value box will appear to the right of the type dropdown. If the query is
inside of a Report Writer report, the parameter name must be typed into the Value box. If the query is inside of a
Report Master report, the Value box will be a dropdown from which any parameter in the parent report may be

selected.

Expression Editor 5|

‘Expression

Field I:3l=l"=1t!ﬂlIFl.n'nr:tit:lnI X o+ -« 7 ()L

Type [PPSR ~ | | Vae | =

Cancel

Clear Check 0K

3/15/2007 - 28



Evolution Query Builder

1.4.3.3 Function Tab

The Function Tab allows the user to apply a variety of predefined functions to field values, calculated values,
variables or constants. Each function does something different and has a brief piece of documentation that
describes what the function does, as well as its syntax for correct use.

The available functions are divided into five folders by category:

Type Conversion
String Routines
Date Routines
Math Routines
Misc

The category folders are located in the left pane of the Function Tab.

Expression Editor 5|

1 Expression

L

Field | Constant Function | WX o+ - s 1 ()L

| Type Conversion
(] String Routines
] Date Routines
(] Math Routines
(] Misc

Clear Check oK Cancel

3/15/2007 - 29



Evolution Query Builder

Double-clicking on a folder will show the functions inside that folder.

Expression Editor x|
—Expression
Field | Constant Function X e e f A
] Type Conversion Converts &V alue to sting value. ]

] String Routines
;j Date Routines
(] Math Routines
;l Misc

[func!ion AsString{AValue: Variant; AConvertNull: Boolean): String]

Clear | Check | 0K | Cancel |

In the Expression Editor window above, the Type Conversion folder has been expanded and the AsString function
selected in the left pane of the Function Tab. With this function selected, a description of what it does appears in
the right pane of the tab:

Converts AValue to string value.

This description refers to a variable AValue. The description is saying that the function will convert the value
found in the AValue variable to a string, which is a specific type of data.

With the AsString function selected, an emboldened line of text appears below the two panes in the Function Tab.
This text shows the syntax of the function.

Function AsString(AValue: Variant; AConvertNull: Boolean): String
The first word, “Function”, says that this is a function.

The name of the function immediately follows the word “Function”. This means that the name of the function is
“AsString”, since that is what immediately follows “Function”.

Next is the opening parenthesis. This means that the following text describes the variables being passed into the

function for the function to perform its job on. Each variable being passed to the function is separated from the
next by a semicolon. Within each variable is the variable name and variable type, separated further by a colon.

3/15/2007 - 30



Evolution Query Builder

1.4.3.4 Button Panel

The Expression Editor’'s Button Panel allows a user to incorporate arithmetic into the Expression Box. For
example, to show a dollar amount in a report with an implied decimal point (i.e. $125.50 would show as 12550),
the simplest way is to multiply the dollar amount by 100. This is shown below using the example of multiplying
the Federal_Taxable_Wages field from the Pr_Check table.

e First, the value to convert must be inserted into the Expression Box. In this case, that is the Pr_Check table
and the Federal_Taxable_Wages field.

|
—Expressian
t1 Federal_Taxable_‘Wages |
Field | Constant| Function| WX o+ - = 1 ()L
Table [t Pr_Check =]
= Exclude_Employee_Oasdi String ZI
Exclude_Employer_Fui String
= Exclude_Employer_Medicare String
Exclude_Employer_Oasdi String
= Exclude_Federal String
= Exclude_From_Agency String
Exclude_Time_Off_Accural String -I
(= Federal_Gross_Wages Float
[ Federal_Shortfall Float
= Federal_Tax Flost
= Federal_Taxable_Wages Float
= St Bl ;I
Clear Check oK | Cancel |

3/15/2007 - 31



Evolution Query Builder

The value in the Expression box needs to be multiplied by 100. The concatenation operator is the asterisk ().
To do this, while the cursor is to the right of the Federal_Taxable_Wages field, the Multiply button is clicked

to insert the multiplication operator after the field that is to be multiplied by 100.

£
~Eupression —
t1 Federal_Taxable_\Wageg*]
Field | Constant | Function | MX o+ - s 1 ()L
Table It‘l Pr_Check E’
(= Exclude_Employee_Oasdi String ;I
Exclude_Emplayer_Fui String
Exclude_Employer_Medicare String
Exclude_Employer_Oasdi String
Exclude_Federal String
Exclude_From_Agency String
= Exclude_Time_Off_accural String
(= Federal_Gross_\Wages Float
(=2 Federal_Shortfal Float
= Federal_Tax Float
Federal_Taxable_Wages Float
=N Cillae LE BT
Clear Check 0K | Cancel |

3/15/2007 - 32



Evolution Query Builder

With the value to multiply and the multiplication operator in the Expression box, the last piece of the
expression is the value to multiply by. The number to multiply by is always going to be 100 in this example.
Because the value will always be the same, it is a constant, to be defined on the Constant Tab. The constant
is the number 100, which is an integer. This means that Integer is the appropriate selection in the Type
dropdown. The constant 100 needs to be inserted immediately after the multiplication operator.

Expression Editor x|

~Expression
t1 Federal_Taxable_Wages '|1 I.'II'.Il

Field Constmt'rumﬁoﬂ iyt = w7 h
TyDBIIntegel E] Value I'IUD

Clear Check ok | cancel |

Clicking the OK button in the lower right of the Expression Editor window saves the changes to the
expression.

3/15/2007 - 33



Evolution Query Builder

In the case of string expressions, the Button Panel allows for the concatenation of multiple strings into a single
string.

For example, the user may wish to see the full name of the employee in a single field. In Evolution, the employee
name is stored in three different string-type fields in the ClI_Person table: First_Name, Middle_Initial and
Last_Name. It is possible to show all three of these table fields in the same query field via concatenation. This
example is shown below. The ending format will be LastName, FirstName Middlelnitial

e The first value to be concatenated must be inserted into the Expression Box. In this case, that is the
Cl_Person table and the Last_Name field.

|

Expression

t1 .Last_Namel

Field IEonstanll Function | ‘_‘| X + - = 5 () Ll
Table ll‘! Cl_Person ﬂ
= Filler Memo ZI

= First_Name String
= Gender String
E2119_0On_File String
L) ast Name String
= Middle_nitial String
= Miltary_Reserve String
=i notes Blok
= Phonet String
= Phone2 String
= Phone3 String
= i iwm e ;I

Clear Check ok | cancel |

3/15/2007 - 34



Evolution Query Builder

The value in the Expression box needs to be concatenated with the next part of the expression. The
concatenation operator is the plus sign (+). This must be inserted into the Expression Box after the
Last_Name field. To do this, while the cursor is to the right of the Last_Name field, the Add button is clicked.

|
—Expression
1 .Last_NameB
7 1, ’
Field | Constant| Function| WX +[- s 7 ()L
Table {11 C|_Person =~
= Filler Memo ZI
First_Mame String
= Gender String
19_0On_File String
=Y ast_Name String
= Middle_Initial String
Miltary Reserve String
= Notes Blob
= Phonet String
Ei Phone2 String
= Phones String
=M Miimds swm [=TENY :j
Clear Check 0K | Cancel |

3/15/2007 - 35



Evolution Query Builder
The next string to be concatenated is the comma character. This is a constant, so it is inserted in the same
way that any other string constant would be inserted. This needs to be done while the cursor is immediately
following the previously added concatenation operator.

Expression Editor

1 .LName <

3/15/2007 - 36



Evolution Query Builder

The next piece to be inserted is another concatenation operator, done the same way as the first, with the
cursor immediately following the comma portion of the expression.

The First_Name field comes next. This is inserted the same way the Last_Name field was inserted,

immediately following the last concatenation operator.

Another concatenation operator is inserted.

The next string to be concatenated is the space between the First_Name and Middle_Initial fields. This is
inserted the same way the comma was inserted, replacing the comma character with a space character in the

Value box.

One more concatenation operator is inserted here.

The final piece is the Middle_lInitial field. This field is inserted just like the other two fields inserted into the
Expression Box in this example. The end result should look like this:

o
—Expression
t1.Last_Name + ' '+ t1 First_Name + ' ' + t1 Middle_Initial
- 1e02 .
Field | Constant | Function | mX + - = () L]
Table ll‘! Cl_Person ﬂ
= Filler Memo ZI
[ First_Name String
= Gender String
=119_On_File String
Last_Mame String
Micclle_Initial String
=1 Military_Reserve String
=i notes Blok
(=1 Phonet String
= Phone2 String
= Phone3 String
= i iwm Bials ;I
Clear Check oK Cancel |

3/15/2007 - 37



Evolution Query Builder

1.4.4 Keys and Joins
1.4.4.1 Keys

Sometimes data must be selected from two or more tables to get the desired result. Joins allow this to be
accomplished.

Database tables are often referenced by other database tables via the key fields of those tables. A table’s
primary key is the column in that table with a unique value for each row of data. The purpose of referencing a
table via its key is to associate data from one table with that of another.

For the examples in this section, the tables involved are Pr_Check and Ee. These two tables are associated with
one another via the primary key of the Ee table — Ee_Nbr. The Ee_Nbr field in the Pr_Check table indicates the
owner of that check.

In the Ee table below, the Ee_Nbr field is the primary key, meaning that no two rows can have the same value in
the Ee_Nbr field. The Ee_Nbr field is unique and can be used to distinguish between two different people,
regardless of other employee similarities.

In the tables below:

e The Ee_Nbr column stores the primary key of the Ee table .

e The Pr_Check_Nbr column stores the primary key of the Pr_Check table .

e The Ee_Nbr column in the Pr_Check table is used to reference a unique employee in the Ee table without
using the employee’s Custom_Employee_Number.

Ee:

Ee_Nbr |Custom_Employee_Number

1 A100

2 A200

3 B100

4 C100

Pr_Check:

Pr_Check_Nbr Payment_Serial_Number Check_Type Ee_Nbr
1 1024 R 1
2 1025 R 2
3 1026 R 4
4 1027 R 1
5 1028 R 2
6 1029 R 4
7 1030 M 1
8 1031 M 4

3/15/2007 - 38



1.4.4.2 Joins

Evolution Query Builder

In Query Builder, there are two types of joins — inner and outer. Joins are the way data from one table may be

matched up with data from a different table via that second table’s primary key. They are created by dragging the
field to be joined on from one table, and dropping that field either into an empty part of the Work Area, or on top of
the other table to be involved in the join.

Dragging and dropping a foreign key field from a table in the Work Area into an empty part of the Work Area will
add the table whose primary key field was dropped. In the example below, the Pr_Check table has been
dropped into the work area already. The Ee_Nbr field was dragged and dropped into the Work Area from the
Pr_Check table, adding the Ee table since the Ee_Nbr field is the primary key of the Ee table:

[vX|sd B0 BA|DE X [m|B %

Query Stucture

12 Main Statement

Child tables of: Pr_Check

- [_] Company
&[] Employee
-] Payroll

Pr_Check
(=) Ee_Medicare_Tax
Ee_Medicare_Tax...

Ee_Oasdi_Gross_...
Ee_Oasdi_Tax

=) Ee_Oasdi_Taxable...
&) Ee_Oasdi_Taxable...

Effective_Date
Er_Fui_Gross_Wa...
Er_Fui_Tax

== Er_Fui_Taxable_W...
Er_Medicare_Gros...

Er_Medicare_Tax

Er_Medicare_Taxa...

E2Er Oasdi Gross ..

Float
Float

pEgggggvaads

AND

Showing Fields | Sorting | Misc | SQL | Data Resut |

Field

| Field | Table |

By default, the tables are joined via an inner join. That join can be changed to an outer join, as explained later.

3/15/2007 - 39



Evolution Query Builder

In the case that both tables already exist in the query with no join, they can be joined in a similar way. The
Ee_Nbr field can be dragged from the Pr_Check table and dropped onto the Ee table. The Add Join window wiill
appear as shown below:

E|

[~Join Description

Table1 [t PR_CHECK ~|
Field |Ee_Nbr =l
Join  [INNER JOIN -]
Table2 [z EE ~|
feo ZETR—— -
ok | Cancel |

The Add Join window has the following dropdowns:

Table 1 — The first table to be included in the join.
Field [Table 1] — The field from Table 1 being joined and matched on.
Join — The type of join. Join types include:
o INNER JOIN
o OUTER [Table 1]
o OUTER [Table 2]
Table 2 — The second table to be included in the join.
Field [Table 2] — The field from Table 2 being joined and matched on.

The Table 1 and Table 2 dropdowns will include any table that exists in the currently selected subquery.

The Field dropdowns will show all fields included in the table selected in the corresponding Table dropdown

For the outer join type options, the table specified is referred to as Table 2 in the examples that follow.

3/15/2007 - 40



Evolution Query Builder

INNER JOIN - Returns all rows from both tables where the value of the field being joined on in table 1 also exists
in table 2.

In the example below, if there are rows in Ee that do not have matches in Pr_Check (in this example, Ee_Nbr =
3), those rows will not be included in the result.

The following example shows an inner join represented by a solid black line. This query will return
Custom_Employee_Number, Payment_Serial_Number and Check_Type for all employees for which at least
one matching check exists:

|vX | @3E RBRIQOH BH|HEF X |m |k wer
12| Main Statement

| Pr_Check u|

All Tables
& Payrol Al
| B ' Pr
- @[T pr_Batch
@[T Pr_Check
. @[T Pr_Check_Line_Locs
| @[T Pr_Check_Lines
- @7 Pr_Check_Lines_Disl
| @[T Pr_Check_Locals
- @[T Pr_Check_States ; . .
| Pr_Check_Si Showing Fields | Sorting| Misc | SOL | Data Resut |
El Pr_Miscellaneous_Ct [ Fieid i Type I Field Alias T Table ]
| £8 Pr_Reports Custom_Employes_Number Sking 2
8914 Pr_Reprint_History. ™ | payment_Serial_Number Integer i
- [ Pr_Reprint_History L | Check_Type Sting 1
@[T Pr_Scheduled_E_Ds
- [ [T Pr_Scheduled_Event
@ [T Pr_Scheduled_Event
. @[T Pr_Services
&7 wvPr
#-F7 wPr

{1 Cherk =
IR

3/15/2007 - 41



Evolution Query Builder

Below is a diagram showing the Ee table on the left and the Pr_Check table on the right. Lines are drawn linking

each row in the Pr_Check table with its corresponding row in the Ee table:

Ee_Nbr Custom_Employee_Number

1

2
3
4

Based on the example tables above, this query will return the following result:

Custom Employee Number

A100
A100
A100
A200
A200
C100
C100
C100

A100
A200
B100
C100

Payment_Serial_Number
1024
1027
1030
1025
1028
1026
1029
1031

Pr_Check_Nbr Payment_Serial_Number |Check_Type Ee_Nbr

0N O WN -

1024
1025
1026
1027
1028
1029
1030
1031

Check_Type

=700V VOO

R

=220 X0 XV AOXD

1

AR a DN =2 DN

Custom_Employee_Number B100 does not exist in the Pr_Check table. As a result, the inner join excludes
data where Custom_Employee_Number = B100.

3/15/2007 - 42



Evolution Query Builder

OUTER JOIN - Returns all rows from table 1, even if there are no matches in table 2. If rows exist in table 1 that
do not have matches in table 2, those rows from table 1 will still be listed.

For outer joins, Query Builder allows the user to specify which table is table 1 and which is table 2. Right-clicking
on a pre-existing and selecting the Join type option enables the user to select one of two OUTER options. Each
will specify a different table. The table specified in the selected option will be table 2 for that outer join.

In the example below, if there are rows in Ee that do not have matches in Pr_Check (in this example, Ee_Nbr =
3), those rows will still be included in the result.

The following example shows an outer join represented by a dark red line, half solid and half dashed. The solid
half is connected to the table in which data must exist in order for it to be included in the result (table 1). The
dashed half is connected to the table in which data may or may not exist (table 2).

Data returned by an outer join includes:

e All rows from table 1, regardless of whether a matching row exists in table 2.
e Those rows in table 2 for which a match exists in table 1.

If table 2 includes rows that do not match those in table 1, those non-matching rows from table 2 will not be
included in the result.

This query will return Custom_Employee_Number, Payment_Serial_Number and Check_Type for all
employees, regardless of if a matching check exists:

' Query Builder

vX d PRIQOZ B0 E X |m|bwex
=-{7] Main Statement

| Pr_Check t‘]

i

R RN R NN RCE I,

Pr_Check_Sui Showing Fields | Misc | SQL | Data Resuit|

o = | Field | Type | Field Alias |_Table |
ST Rrporty __| [ Custom_Emplopee_Number Sting )
Pr_Regrind_Hstory Payment_Seial_Number Integer t
Pr_Reprint_History_C Check_Type String 1
Pr_Scheduled_E_Ds
Pr_Scheduled_Event

&-5-E-E-E

|
3

i i -5 wPr Cherk bt
4| | »

10anaoooaAoaooaoana
2 2
o

RGN RGRC)
3,

3/15/2007 - 43



Evolution Query Builder
Below are two tables being joined via an outer join.

Ee_Nbr Custom_Employee_Number

1 A100
2 A200
3 B100
4 C100

Pr_Check_Nbr Payment_Serial_Number Check_Type Ee_Nbr

1 1024 R 1
2 1025 R 2
3 1026 R 4
4 1027 R 1
5 1028 R 2
6 1029 R 4
7 1030 M 1
8 1031 M 4

If this outer join is performed on the Ee and Pr_Check tables above, the result will look like this:

Custom Employee Number Payment_Serial_Number Check_Type
A100 1024 R

A100 1027 R

A100 1030 R

A200 1025 R

A200 1028 R

B100

C100 1026 R

C100 1029 M

C100 1031 M

Note the row returned where Custom_Employee_Number = B100. There is no matching row in the Pr_Check
table, so the result for that Ee row consists of the Custom_Employee_Number with no
Payment_Serial_Number or Check_Type.

An extra option for outer joins is available by right-clicking on a particular table or subquery. The Isolate Filtering
from Outer Join option tells Query Builder whether to apply the outer join before any conditions in that table, or
vice versa. With this option checked, the outer join is performed first, filtering the result of the outer join. With the
option unchecked, data is selected from the tables involved in the outer join, the individual tables are filtered as
defined in the query and then the outer join is performed.

3/15/2007 - 44



Evolution Query Builder

1.4.5 Table Parameters

Any table may have table parameters. Those parameters may be viewed in the Parameters of “<selected
table>” dialog. A table parameter is a kind of condition applied to the table so that the set of data being worked
with in that table is limited for efficiency. For example, almost every table in Query Builder has the As Of Date

parameter by default. This parameter is used to determine as of what date data is to be viewed. By default, this
parameter is set to Current Data.

x
| Parameter ] Type l

As Of Date

Constant Value Eutelnalpalameleil (B} Explessionl Emptyl

Parameter Value ICwenl Data :]

0K Cancel

3/15/2007 - 45



Evolution Query Builder

The parameters dialog shows the selected table’s parameters in a list in the top of the dialog.

Parameters of "Check"

I Constant Value  Extenal Parameter | OB Eupreasinnl Emptyl

Parameter Value  |EESGIEINER: j

oK Cancel

The bottom portion of the parameters dialog allows the user to define the parameter using one of the four
available buttons:

Constant Value
External Parameter
QB Expression
Empty

Parameters of "Check"

Il:onstanl\falue EulemalParamelasl [F]:] Eupreasinnl Emptyl

Parameter Value  |EESGIEINER: j

oK Cancel

As of the date this document was written, the only useful button here is the Constant Value button. The other
three will be useful in the future as virtual tables are added and completed.

3/15/2007 - 46



Evolution Query Builder

Because of the fact that data changes are tracked historically, that historic data may be fetched using Query

Builder. By default, the As Of Date parameter is defined to fetch current data only. This is done by selecting
Current data in the Parameter Value dropdown.

x
R 7
As Of Date

I Constant Value Extemal Pmamelal (B} Euplessianl Emplyl

Parameter Value ICulenl Data :I

0K Cancel

To fetch all historic data for a table, select Historical Data in the Parameter Value dropdown for the As Of Date
parameter, shown below.

x|
| Paramet I Type [
As Of Date Date

I Constant Value  Extenal Parameter | OB EHpressiunl Emplyl

Parameter Value  |[EEEIS- IR j

(1] Cancel

This can be a very useful troubleshooting tool when an issue may have possibly been caused by a field value
being incorrect as of a specific date.

3/15/2007 - 47



Evolution Query Builder

Data may also be fetched from a table as of a specific date and time. To do this, overwrite the Parameter Value
dropdown with the date and time data is to be fetched as of. The format here is m/d/yyyy hh:mm:ss xm, where

the time portion is optional. It is important to note that in Evolution terms, 1/1/2005 is before 1/1/2005 12:00:00
AM.

x
| Parameter | Type |

As Of Date

I Constant Value Extemal Palarnelell (B} Euplessianl Emptyl

Parameter Value  [1/1/2005 11:5353 PM ~]

0K Cancel

Defining the parameter above will return the row of data for that table that is effective as of 1/1/2005 11:59:59 PM,
which happens to be the last second of the day.

The earliest effective date for 1/1/2005 is the date with no time. This is shown below.

x|
Paramet ] Type [

Az Of Date

I Constant Value  Extenal Parameter | OB EHpressiunl Emplyl

Parameter Value  |1/1/2005 |

(1] Cancel

3/15/2007 - 48



Evolution Query Builder

1.4.6 Subqueries

A subquery is a query that is part of another query. It is displayed in the Work Area in almost the same way as a
table, except the title bar of a subquery is green instead of blue.

VX SE|#7 Q0% B LEX 0 B

Checks 12

m
L
i
I

0 Pr_Reprint_Hstory Showing Fiekds | Soting | Misc | SOL | Data Resut |

[ Pr_Reprind_History _Dete — -
— el [ Field [Twe [ Fooldsios [Tabe i

&

55393337
g?ﬁ
i

2
i =
-mmmmmmmmmmmmmmmmmmmmmmmm_&
aa0888aa8
3
2

;-
.

3/15/2007 - 49



Evolution Query Builder

The purpose of a subquery is to segregate different parts of a query from each other. This is useful when there
are two pieces of information stored in the same column of the same table, but data from that column needs to be
shown in different columns in the query result. An example of this would be a query that is to show a sum of all
earnings in one column, and a sum of all deductions in another column. The amount of an earning or deduction is
stored in the Pr_Check_Lines table in the Amount column. A query that included no subqueries and selected
the sum of earnings and deductions for each employee would look like this:

_ ~lolx|
|vX | GH PRIQOR B 0E X | 05w

Quety Structure

[ T7] Mo Staement

Pr_Check

Pr_Check_Lines

Condition Constructor

Left Pat
i !

FubSHZE_D_Code_Type 1.1 S -

Ui_l - sl i) Deru_CI:Agemy_m
L Chert  Right Part
@] Company B AND

@] Employ
@ (] Payrol

SubStr(t2 E_D_Code_Type,1,1) IN (list)

Showing Fields | Sorting | Misc | SOL | Data Resut |

Field | Type | Fieid [ Table |
Cuestom_Employes_Number Shing 4
SUM[N Amount No) Float Amount

A condition exists on the CI_E_Ds table that allows the query to only return rows in the Pr_Check_Lines table
where the matching row in the CI_E_Ds table has a value in the E_D_Code_Type column that starts with “E” or
“D”. This query will return Custom_Employee_Number in the first column, and the sum of all earnings and
deductions in the Amount column. This is because the condition on the CI_E_Ds table is applied to the whole
query and cannot be applied to single fields in the Showing Fields Tab.

3/15/2007 - 50



Evolution Query Builder

In order to get the desired result, this query must be split up into two subqueries. Each subquery will look much
like the one just shown. There will be three differences:

e The condition on the CI_E_Ds table will be modified to only include “E” in the Right Part for one subquery,
and “D” in the Right Part for the other subquery.

e The Ee_Nbr field will be included in each sub query’s Showing Fields tab for joining purposes in the parent
query.

o The Ee table will not be included in each subquery. It will be included in the parent query, and an outer join
will link the Ee table to each subquery.

To create this query, the following steps are taken, starting with the query just shown:

¢ Right-click on the Ee table in the Work Area and select Remove Table to remove the table from the query.

|vX|@E BEQOH BN OE X 0|HB~

Q%Sﬂu&n
X Pr_Check 1]
i Pr_Check_Lines n

@ [T Pr_Reprint_tistory Showing Fiekds | Sorting | Mise | SOL | DataResut |

-7 Pr_Reprint_History Dete | Moy | Type | Field Alias. | Table |
= SUM(t Amount No) Float Amount

-
-

3/15/2007 - 51



Evolution Query Builder

Double-click on the Ee_Nbr field inside the Pr_Check table in the Work Area to add it to the Showing Fields
Tab.

v X |@a |27 Q0% B0

String

Float

Float

Float

Float

Float

Float

(Chid tables of: Pr_Check fros

® ) Company ;‘:

mgﬁm =
® Payroll

e Float

Float

_ Fioat

Showing Fiekds | Sorting | Misc | SOL | Data Resut |

| Field |
SUMI Amount No)

Ee_Nbr

[Tae 1|

iR
e

3/15/2007 - 52



Evolution Query Builder

Drag and drop the Ee_Nbr field in the Showing Fields Tab on top of the Amount field directly above it to
rearrange the fields in the Showing Fields Tab so the Ee_Nbr is first.

(vX GR|2H Q0% B LE X0 B

Query Structure
&l Main Statement

String
Float
Float
Float
Float
Integer
Float
Float
Child tables of: Pi_Check m
-] Company ik
& Employee =403
& ) Payrel L
Float
Flost

L

Showing Fiekds | Sorting | Misc | SOL | Data Resut |

Field Typ Field Alias Table |
EeNbC . ege 3 |
SUM(N Amount No) Float Amount

3/15/2007 - 53



Evolution Query Builder

¢ Right-click on the Main Statement in the Query Structure Area and select Add - Parent Query.

PEIr I
s it

Pr_Check

Pr_Check_Lines

C
i

[ Pr_Reprint_History Showing Fiekds | Misc | SQL | DataResu | .
[T Pr_Reprint_History_Dete [Fieid | Type | Field Alias | Table il

- Ee_Nbr
Pr_Scheduled_Evert SUM( Amount No) Float Amount

§§

i

Z
-mmmmmmmmmmmmmmmmmmmmmmmm_&
EEEEEEE B

|Ha008808848

g.

3/15/2007 - 54



Evolution Query Builder

e Select the Main Statement in the Query Structure area. Right-click on the green subquery in the Work Area
and select Copy.

m

i

; EEEEEEEHEEEEEB&IEEEB@-EEEED 3
E]
3
Ig

i
I

gpoooaoaaa

3

|oaaaaan

SubQuery

Showing Fiekds | Soting | Misc | SQL | DataResut|

| Field

3/15/2007 - 55



Evolution Query Builder

Right-click in an empty part of the Work Area and select Paste Table to add another copy of the subquery to
the Main Statement.

(v X GE 20 Q0% Ba|LEX 06 Bm

Quety Structure
=] SubQuery
t4
t4 (COPY)

Showing Fields | Soring | Misc | SQL | Data Resut | _
Fieid [Type | Feldalias [Table iI

3/15/2007 - 56



Evolution Query Builder

¢ Right-click on each subquery in the Query Structure Area inside the Main Statement and select Edit Query
Description to rename each subquery. Name one “Earnings” and the other “Deductions”.

l Pr_Check ]

Pr_Check_Lines n

HEBREEEEEE

aooaoaoooo
? =
1111
eeEi
f

Showing Fiekds | Mise | SOL | Data Resut|
| Field | Type | Field Alias. | Table |

Ee_Nbr
SUM( Amount No) Float Amount

s

i
i
g™

{

Check_Local
Check_State

2

§

N NCNCR NN
|Haaa88a
$33333%
4

-
-

e Select the Earnings subquery in the Query Structure Area. Open the CI_E_Ds table in the Work Area,
double-click on the condition and modify it to look like the one below and click OK:

Condition Constructor

~Left Part
Expression
2.E_D_Code_Type

™ Inverse compare result (NOT)

~Right Part
atching Stiing Expression
% Pailial at Beginning | [E'
" Partial Anpwhere

[ Case-sensitive

Check | oK | cancel |

3/15/2007 - 57



Evolution Query Builder

Double-click on the Amount field in the Showing Fields Tab. Change the Alias of the field to “Earnings” and
click OK:

Showing Field Editor |
Field Aliss |E arnings]

Expression

SUM(T . Amount No)

suM [ count| min | mex | 0K Cancel |

Select the Deductions subquery in the Query structure Area. Open the CI_E_Ds table in the Work Area,
double-click on the condition and modify it to look like the one below and click OK:

X

—Left Part Compare Operation———
Expression

2E_D_Code_Type

LIKE v

[ Inverse compare result (NOT)

~Right Part
Matching———

& Partial at Beginning

String Expression
ID{

" Partial Anywhere

[v Case-sensitive

Checkl

ok | Ccancel

Double-click on the Amount field in the Showing Fields Tab. Change the Alias of the field to “Deductions”
and click OK:

Showing Field Editor

F
Field Alias |Deductions|

Expression
SUM(tT.Amount No)

suM | counT| MIN | max | 0K Cancel |

3/15/2007 - 58



Evolution Query Builder

Select the Main Statement in the Query Structure Area. Drag and drop the Ee table from the All Tables Area
into the Work Area:

|vX|@3E PEIQOH B LDEX |0 [B B

Query Structure
= i&! Main Statement

Eamings
Deductions
Deductions
String
String
String
. Integer
Integer
String
String
Float
Child tables of Ee Integer
-] Company String
-] Employee Integer
& W Integer
@] Payrol Integer
Integer
Intecer

Showing Fiekds | Sorting | Mise | SOL | DataResut |

Field | Type | Field Alias. | Table |

Drag and drop the Ee_Nbr field from the Ee table in the Work Area onto the Earnings subquery. When the
Add Join window appears, create an outer join where the Earnings subquery is selected, referenced by the

subquery name in the upper right corner of the subquery — t4 in this example — followed by the word
“SubQuery”, then click OK:

Add Join [
—Join Description

Table1 [16 EE =l
=

Field |Ee_Nbr

AT R OUTER (t4 SubQuery)

Table 2 |l4 SubQuery 3
Field  [Ee_Nbr ~|

ok | cancel |

3/15/2007 - 59



Evolution Query Builder

Drag and drop the Ee_Nbr field from the Ee table in the Work Area onto the Deductions subquery. When
the Add Join window appears, create an outer join where the Deductions subquery is selected, referenced

by the subquery name in the upper right corner of the subquery — t5 in this example — followed by the word
“SubQuery”, then click OK:

Add Join X
~Join Descriptions
Table1 [16 EE =l
Field |Ee_Nbr |
PO RNIOUTER (15 SubQuery)
Table 2 |t5 SubQuery 3
Field  [Ee_Nbr ~|

ok | cancel |

The end result should look similar to the screen below. There should be two outer joins, each one linking a
subquery to the Ee table, joining on the Ee_Nbr field in each case:

|vX|@3E PEIQOH B LDEX |0 [B B

Query Structure
= i&! Main Statement

Eamings
Deductions
String Deductions
Date
String
String
String
String
String
String
Child tables of. Ee ;. SHg ] Earnings 14|
&[] Company ' :;':
&[] Employee d
& MR String
&1 Payroll 52 General Ledoer T... Strina
| AND

Showing Fiekds | Sorting | Mise | SOL | DataResut |
| Field | Type | Field Alias. | Table |

3/15/2007 - 60



Evolution Query Builder

Add the Custom_Employee_Number field from the Ee table, Earnings field from the Earnings subquery
and Deductions field from the Deductions subquery to the Showing Fields Tab:

vX|@H P@QA0H B0

Query Stucture. i

= Main Statement Deductions
Eamngs
Deductions

Earnings

o

o

o

o

o

o ——
[7] Ee_Emergency_Contact | Showing Fieds | Soting | Misc | SOL | Data Resut |
E -

o

o

o

o | »

3/15/2007 - 61



Evolution Query Builder

1.4.7 Unions

The purpose of a union is to combine the results of one subquery with the results of another. Each subquery in a
union is referred to as a Union Item in Query Builder.

In a union, all corresponding columns in each union item need to have the same data type. So, if the union item
#1’s first column is of type Integer, then each of the remaining union items must also have a first column of type
Integer. The second columns of all union items must be of matching type as well — String for example.

All rows returned by each union item will be shown as a separate row in the main union’s results. For example,
the Pr_Check table includes all federal tax information. Without a union, it would be difficult to return various
federal taxes on the same check on different rows. The union makes this a much simpler task, as explained
below.

e Starting with an empty Main Statement, select the Main Statement in the Query Structure Area and add the
Pr_Check table to the Work Area:

vX | GE PRIQCRIBH| DEX [0 R
Quety Structure

17 ManStalement

Showing Fiekds | Sorting | Mise | SOL | DataResut |
| Field | Type | Field Alias. | Table |

3/15/2007 - 62



Evolution Query Builder

e Add a String constant to the Showing Fields Tab. Make the Field Alias “Type”, and the value “Federal Tax”:

(v X%|3E|PH Q0% B LDE X0 BB

Pr_Check
String
String
String
String
String
String
Float
Float
Float
Chidtablesof PrCheck ~ [EE | Float
@[] Company Memo
& Employee Float
& (2 Payrol Float
Float
Float

Showing Fiekds | Soting | Misc | SOL | DataResut |
Field Type Alias T. l

3/15/2007 - 63



Evolution Query Builder

Add the Federal_Tax field from Pr_Check to the Showing Fields Tab:

PZXTIEEICEL

String
String
String
String
String
String
Float
Float
-] Company Memo
& Employee Float
& ] Payrol Float
Float
Float

Showing Fiekds | Soring | Misc | SL | DataResut |

[Tpe [t [Tete 1|
Federal Tax' String Type
Fedetal_Tax Float i

3/15/2007 - 64



Evolution Query Builder

Right-click on the Main Statement in the Query Structure Area and select Add - Parent Query (UNION):

i

; EEEEEEEBEEWEEBEEEEBEEEEED 3

{

gpoooaoaaa

[T Pr_Services

wPr

[ vPr_Check -
[ vPr_Check_Local

[ vPr_Check_State

[T wPr_Check_Sui
vPr_Checkines

[ ver

Pr_Check

Showing Fiekds | Misc | SQL | DataResuk|

| Type

1 Fed Al

‘Federal Tax'
Fedetal_Tax

String
Float

Type

3/15/2007 - 65



Evolution Query Builder

Select the Union of SubQueries in the Query Structure Area. Right-click on the union item with “#1” in the
upper-right corner and copy it as before, pasting a copy into the Work Area. Do this once more so that there
are three union items in the Work Area with the Union of SubQueries selected in the Query Structure Area:

VX R PP QORI B LEX |0 BB

Quety Stiucture
=] SubQuery n
2
| 2 COPY) l 12 ]
12 (COFY)
| 12 3
(Child tables of: UNION

Showing Fiekds | Sorting | Misc | SOL | Data Resut |

[Foi [ T i |
Type String

Fedetal_Tax Float

3/15/2007 - 66



Evolution Query Builder

Right-click on each union item in the Query Structure Area and rename them to “Federal”, “OASDI” and
“Medicare”:

Federal ]
OASDI 2|

| Medicare #3

Child tables of: UNION

 Showing Fieds | Soring| Misc | SQL | DataResut|
| Field
Type

Fedetal_Tax Float

3/15/2007 - 67



Evolution Query Builder

Select OASDI in the Query Structure Area. Double-click the Type constant and change the value to “OASDI".
Remove Federal_Tax from the Showing Fields tab and add the Ee_Oasdi_Tax field:

vX | GE PRIQCRIBH| DEX [0 R
P
=] Union of SubQuenes
Fedstal
P 0ASDI
Medicare Pr_Check

RITIRIIgIFIRiig

KX

Showing Fiekds | Mise | SOL | Data Resut|

[T [Te [ Foiier [Tabe 1|
‘DASDI Stiing Type
Ee_Oasdi_Tax Float i

3/15/2007 - 68



Evolution Query Builder

Select Medicare in the Query Structure Area. Double-click the Type constant and change the value to
“Medicare”. Remove Federal_Tax from the Showing Fields tab and add the Ee_Medicare_Tax field:

vX | GE PRIQCRIBH| DEX [0 R
Quety Structure
EIEUrkmdSL!ﬂuuim
Fedetal

0asDI

Pr_Check

KX

Shoving Fiekds | Misc | SOL | Dala Resut|

Field | Type | Fiekd Alias | Table |
‘Medicare' String Type
Ee_Medicare_Tax Float

The union just created will show one row each for federal tax, OASDI and Medicare. In order to see what check
each tax belongs to, the Payment_Serial_Number field needs to be included in the list of fields on the union’s
Showing Fields Tab. However, fields cannot be added to the Showing Fields Tab of a union by double-clicking or

dragging and dropping fields from tables in the Work Area to the Showing Fields Tab. In a union, they are added
by adding the field to the Showing Fields Tab of each individual union item.

3/15/2007 - 69



Evolution Query Builder

As mentioned earlier, it is a requirement of the union that all union items in the same union are structurally
identical, with the same number of columns, and with each column in the same position in each union item having
the same data type. Query Builder will tell the user if there is a problem with a union item while that union is
selected in the Query Structure Area. The name of the problematic union item will be red in the green bar at the
top of that union item.

Payment_Serial_Number needs to be added to the union by adding this field to the Showing Fields Tab in each
union item in the same place — in this case the third column. In the union shown below, the second two union
items have red names. The problem is that Payment_Serial_Number has been added to the Federal union
item, but not the OASDI or Medicare union items:

vX | GE PRIQCRIBH| DEX [0 R
Quety Structure

5
Federal
I 0ASDI
Medicare
Child tables of: UNION

Showing Fiekds | Sorting | Mise | SOL | DataResut |

| Field [ Tpe | | |
Type Stiing

Federal_Tax Float

Payment_Senial_Number Integer

3/15/2007 - 70



Evolution Query Builder

This problem is resolved by adding the Payment_Serial_Number to the Showing Fields Tab for the OASDI and
Medicare union items. Once that is done, all union item names should turn white:

X
= Federal n
Federal
i 0ASDI I OASDI 2|
Medicare
] Medicare #3
Child tables of: UNION

Showing Fields | Sang | Misc | SQL | DataResut|

[Feld [Tpe 1 1|
Type String

Federal_Tax Float

Papment_Sesial_Number Integer

3/15/2007 - 71



Evolution Query Builder

1.4.8 Other Useful Information and Resources

Sample Queries can be provided upon request. Email to info@paycoinc.com

3/15/2007 - 72



