

Evolution Query Builder

3/15/2007 - 1

1 Query Builder

1.1 What is Query Builder

1.2 Window Layout

1.2.1 Query Structure Area

1.2.2 All Tables Area

1.2.3 Work Area

1.2.4 Tab Area

1.3 Buttons

1.4 Query Concepts

1.4.1 Tables and Buffers

1.4.2 Conditions

1.4.3 Expression Editor

1.4.3.1 Field Tab

1.4.3.2 Constant Tab

1.4.3.3 Function Tab

1.4.3.4 Button Panel

1.4.4 Keys and Joins

1.4.4.1 Keys

1.4.4.2 Joins

1.4.5 Table Parameters

1.4.6 Subqueries

1.4.7 Unions

1.4.8 Useful Information and Resources

Evolution Query Builder

3/15/2007 - 2

1 Query Builder

1.1 What is Query Builder

Query Builder is the tool used to retrieve data from Evolution databases. It is a graphical tool that allows the user
to drag and drop tables, buffers and fields to create SQL queries. Those queries can include inner, left and right
outer joins and unions. Data returned by the query can be sorted and formatted inside Query Builder. New
columns can be created that are calculated based on data returned by the query. This document is an
introduction to Query Builder and its functionality.

Evolution Query Builder

3/15/2007 - 3

1.2 Window Layout

The Query Builder window has four main areas:

• Query Structure Area (A)
• All Tables Area (B)
• Work Area (C)
• Tab Area (D)

A

B

C

D

Evolution Query Builder

3/15/2007 - 4

1.2.1 Query Structure Area

The Query Structure Area shows the layout of the query. There may be multiple levels of a report’s query
depending on the data that needs to be reported on. If there are multiple levels of the query (referred to as
subqueries, to be explained in section 1.4.5), the Query Structure Area will show a tree structure of that query, as
shown below:

In cases where there are multiple levels in a query, the Work Area and Tab Area will show what is inside the
selected subquery. In the example above, the top level of the query is Main Statement. Below that, are two
subqueries, each having it’s own pair of subqueries. With the Main Statement selected, based on what is shown
in the Query Structure Area, the Work Area should show two subqueries, t1 and t2, as it does. If the t1 subquery
in this example were selected, the Work Area would show its two subqueries, t3 and t4.

Evolution Query Builder

3/15/2007 - 5

1.2.2 All Tables Area

The All Tables Area shows all tables and buffers and their corresponding fields that are available for use in the
query. The tables are split into different folders based on the type of data stored in each table. Tables that
contain payroll data may be found in the Payroll folder. Tables that contain employee information are located in
the Employee folder.

For a table or buffer to be used in a query, it must be dragged from the All Tables area and dropped into the Work
area. If a table is open in the Work area, the All Tables area will become the Child tables of: <selected table>
Area, as shown below. The Child tables of: <selected table> will show the tables that reference the key field of
the selected table, in the case below, pr_check_nbr.

Evolution Query Builder

3/15/2007 - 6

Each table and buffer in the All Tables or Child tables of: <selected table> Areas can be further expanded to view
the columns that exist in that table.

To the left of each column name, there is an icon. That icon helps describe the column. There are three different
icons that can appear there, shown below. After each icon is a description of what that icon means to that field.

This is a normal column used to store data relevant to this table.

This is the key of the table. This column uniquely identifies each current record in this table.

The data in this column references the key of a different table. This column may be dragged and dropped
from the table in the Work Area to another part of the work area to add the table whose key this is, joining the two
tables on that column.

Evolution Query Builder

3/15/2007 - 7

1.2.3 Work Area

The Work Area is where the query is built. Tables and buffers are dragged from the All Tables Area into the
Work Area for use in the query. If there is a field that is needed in the query for any reason (joining, sorting,
calculating), the table or buffer in which that field is found must be dropped into the Work Area.

Evolution Query Builder

3/15/2007 - 8

In the previous screen, the Changed_By field has the foreign key icon to the left of it. That means that the field
can be dragged from the table in the Work Area into another part of the work area to add the table whose key
value is stored in that field of the selected table. The result of this action is shown below.

The Sb_User table was added to the query by dragging and dropping the Changed_By field from the Cl_Person
table in the Work Area to an empty part of the Work Area. Both tables are now joined on the appropriate field –
Changed_By in Cl_Person and Sb_User_Nbr in Sb_User. The Changed_By field in the Cl_Person table
stores the internal user number (Sb_User_Nbr) of the person who last changed each record in the table. This is
true for almost all tables in the Evolution database.

Evolution Query Builder

3/15/2007 - 9

1.2.4 Tab Area

The Tab Area has five tabs:

• Showing Fields
• Sorting
• Misc
• SQL
• Data Result

In subqueries (any query that has a parent query), the Showing Fields Tab must include any field that needs to
be available to the parent query. In the top-level query, the Showing Fields tab must include any field that needs
to be available to the Report in which the query exists. If this is a query outside of a report, the Showing Fields
tab in the top-level query needs to include all fields to be shown in the result when the query is run from the Misc -
Query Builder window, or from the top level of the query inside Query Builder.

Evolution Query Builder

3/15/2007 - 10

The Sorting Tab is only available at the top level of the query. Using this tab, the result returned by the query
can be sorted on any fields on the Showing Fields tab. The results can be sorted on the selected fields in
ascending or descending order.

Evolution Query Builder

3/15/2007 - 11

The Misc Tab has a check box labeled “Result should be distinct by selected fields”. If this check box is checked,
the result returned by the query will not include duplicate rows of data. Each row will be unique. For example, a
query selects check date and employee from the Pr, Pr_Check and Ee tables. If an employee has multiple
checks for a single check date, the query would return different results with the check box unchecked versus
checked.

Employee 1 has three checks in payrolls check dated 2/16/2005. With the box unchecked, a row of data would
be returned for each check. In this example, the result would be three rows of data for that employee and check
date. With the box checked, all duplicates are removed from the result, leaving only unique rows of data. In this
example, the result would include a single row of data for employee 1 for the 2/16/2005 check date, regardless of
how many checks this employee had in payrolls check dated 2/16/2005.

All other settings on this tab should be ignored.

Evolution Query Builder

3/15/2007 - 12

The SQL Tab shows the SQL that is written by Query Builder as the query is being built. This tab is for viewing
purposes only. The SQL on this tab cannot be changed.

Evolution Query Builder

3/15/2007 - 13

The Data Result Tab shows the data returned by the level of the query selected in the Query Structure Area. If
the top level of the query is selected, it will show the data returned by the entire query. This tab will show a
column of data for each field on the Showing Fields tab.

Evolution Query Builder

3/15/2007 - 14

1.3 Buttons

Inside the Query Builder window is a panel of button located in the upper left corner by default. From left to right
(as shown below), those buttons are:

• Save & Close
• Cancel & Close
• Load Query from File
• Save Query to File
• Add Subquery
• Delete Subquery
• Search Field/Table (Ctrl+F)
• Content of Table
• SQL Data Result (F9)
• Hide/Show Panels (Ctrl+H)
• Wizard View

Save & Close – Saves any changes you made to the query and closes the Query Builder window.

Cancel & Close – Closes the Query Builder window without saving any changes made to the query since the
Query Builder window was opened.

Load Query from File – Opens the Load Query from File dialog box to select a saved query file to open in Query
Builder. Query files have the extension RWQ.

Save Query to File – Opens the Save Query to File dialog box to save the current query open in Query builder to
a file for later use. If a subquery is selected in the Query Structure Area, this function will save only what is inside
of that subquery. To save the entire query, make sure the top level of the query is selected before clicking this
button.

Add Subquery – Adds either a subquery, parent query or parent query union to the part of the query currently
selected in the Query Structure Area.

Delete Subquery – Deletes the part of the query currently selected in the Query Structure Area.

Search Field/Table (Ctrl+F) – Opens the Find dialog box. A buffer, table or field name may be entered here to
be searched for in the All Tables Area by clicking the Find Next button in the Find dialog box.

Content of Table – Shows all current records in the table or buffer selected in the All Tables Area.

SQL Data Result (F9) – Runs the part of the query selected in the Query Structure Area, populating the Data
Result tab in the Tabs Area.

Hide/Show Panels (Ctrl+H) – Toggles visibility of the Query Structure, All Tables and Tabs Areas. This button is
useful when working with several tables in the same level of a query, as it makes the entire Query Builder window
the Work Area.

Wizard View – Toggles between real and user-friendly alias names of database tables and fields in Query
Builder. For example, in non-Wizard view, the company table is called CO. In Wizard view, it is call Company.

Evolution Query Builder

3/15/2007 - 15

1.4 Query Concepts

This section will explain in detail the following basic concepts and objects needed to build a query:

• Table and buffers
• Conditions
• Joins
• Subqueries

1.4.1 Tables and Buffers

Tables and buffers can be dragged and dropped from the All Tables area to the Work area for use in a query.
The ways in which they can be used are explained later.

Tables – These are permanent storage areas for data used in Evolution. Each table has columns and rows.
Each column stores a different type of data, like employee name, company state or federal deposit frequency.
Each row stores a single instance of each column. All data on that row is related. For example, there is a row in
the Employee table (non-wizard name Ee) for each employee. Each employee has a custom employee code,
pay frequency and hire date. There are columns in the Employee table for each of these three types of data –
custom employee code, pay frequency and hire date – as well as several other columns directly related to the
employee.

Each employee has a single row in the Employee table. Therefore, any other type of data that would exist only
once for an employee may also be stored in the Employee table in the row in which that employee’s data resides.
Each employee has only one home division, branch, department or team, so these pieces of data are also stored
in the Employee table in the relevant row. An employee may have multiple rates, states or scheduled E/Ds.
Because of that, it doesn’t make sense for this data to be stored in the Employee table. Each of these kinds of
data has its own table, because each employee rate, state and scheduled E/D can be unique and customized for
each employee.

Buffers – These are temporary storage areas used in Query Builder and Report Writer to prepare sets of data for
use in a query or report. Buffers have the same basic column/row structure that tables have. However, they may
contain pieces of data from multiple tables, calculated columns or constants.

Buffers are defined outside of Query Builder. After the buffer is defined, a query runs. The buffer is then
populated with selected data from that query. This process can happen multiple times to populate a single buffer.
In the case of multiclient reports, a query is run on the first company, the data required for the report is written to
the buffer, the query is run on the next company, that company’s data is written to the buffer, and the process
repeats until the query is run on the last company and that company’s data is written to the buffer.

After the buffer is created, it can be made available for use in Query Builder. Its content may be viewed by
selecting it in the All Tables area and clicking on the Content of Table button. It may be used in query builder in
the same way that tables are used whether it contains data or not.

Evolution Query Builder

3/15/2007 - 16

1.4.2 Conditions

After a table or buffer has been dropped into the Work area, conditions may be created using columns in that
table or buffer. A condition is a statement that will be either true or false for each row of data in the table.
Conditions are used to limit the data returned by a query. If the condition is true for a row, that row’s data will be
included in the query. If the condition is false for a row, that row will be excluded from the query.

Each condition has three pieces - a left part, a compare operation and a right part. They are defined as follows:

Left and Right Parts – These are the values being compared. They can be calculated, constants or column
values straight out of a table or buffer.

Compare Operation – This defines how the left and right parts are being compared. There is a variety of
compare operations, shown below:

• = – Left and right parts must be equal.
• <> – Left and right parts must not be equal.
• > – Left part is greater than right part.
• < – Left part is less than right part.
• >= – Left part is greater than or equal to right part.
• <= – Left part is less than or equal to right part.

Evolution Query Builder

3/15/2007 - 17

• LIKE – Left part includes the string expression in the right part. With the Partial at Beginning Matching option
selected, the left part must start with what is in the right part. With the Partial Anywhere Matching option, the
left part must include what is in the right part anywhere from beginning to end. With the Case-sensitive
checkbox checked, the condition will be true only if the case of the left and right parts matches. So, if the left
part was the string ‘ABC123’ and the right part was ‘AB’, this would be a match because the string ‘AB’ exists
in both parts and is uppercase in both places. If the right part was ‘Ab’ however, this would not be a match
because the left part includes the string ‘AB’ with both letters being uppercase, but the second letter of the
right part is the lowercase letter ‘b’. In this example, unchecking the Case-sensitive checkbox would make
this a match.

• BETWEEN – Left part is greater than or equal to the initial expression of the right part, and less than or equal

to the final expression of the right part.

Evolution Query Builder

3/15/2007 - 18

• IN – Left part is equal to some value in a list of values defined in the right part.

• EXISTS – The subquery selected in the left part returned a result.

• IS NULL – Left part is null.

Evolution Query Builder

3/15/2007 - 19

By dropping a specific column into the Condition area of a table, Query Builder will assume that this column is to
be used as the left part of the condition. After the compare operation is selected in the dropdown, the next step is
to define the right part. This is done by double-clicking in the white box located in the Right Part section of the
Condition Constructor window. This will cause the Expression Editor window to appear. This window is used to
define a value to be used for comparison in this case. It may also be used in the Showing Fields tab to define a
field beyond just showing a value stored in a table or buffer column. The Expression Editor window will be further
explained in the next section.

Evolution Query Builder

3/15/2007 - 20

For example, the query is gathering payroll data, but only for a specific check date range. A condition may be
created that finds only data related to payrolls with check dates within a specified date range. The steps to create
that condition are as follows:

• Drag and drop the column from the table in the Work area down to the bottom of that table’s Condition area.

This is the area at the bottom of the table in the work space where the word “And” or “Or” is seen. This will
only be visible while the table is expanded in the Work area. If the table is expanded and it is still not visible,
move the mouse pointer over the bottom border of the table window, then find the two arrows pointing up and
down with two horizontal lines between, click and drag up. The Condition area should now be visible.

Evolution Query Builder

3/15/2007 - 21

• After the column is dropped into the Condition area, the Condition Constructor window will appear, shown
below. The compare operation needs to be changed to BETWEEN.

• Clicking in the Right Part Initial Expression box will open the Expression Editor window, shown below. This is
where the beginning date of the date range is to be entered. To do that, select Date in the Type dropdown
and enter a date in the format shown below in the Value box. Pressing Enter or Return on the keyboard with
the cursor in the Value box will put the date into the Expression box above. Click OK.

Evolution Query Builder

3/15/2007 - 22

• At this point, the Condition Constructor window should be visible, the Right Part Initial Expression box
populated with the date entered in the prior step. The same steps should be followed to set the ending date
of the date range. The only difference is that this time, the Right Part Final Expression box should be clicked
to bring up the Expression Editor window.

• After those steps are taken for the Final Expression, the window should look like this. When it does, click OK.

Evolution Query Builder

3/15/2007 - 23

• At this point, the condition has been created. The condition will be visible at the bottom of the table in the
Work area, shown below.

Evolution Query Builder

3/15/2007 - 24

1.4.3 Expression Editor

The Expression Editor is used to by the Condition Constructor and in the Showing Fields tab to define conditions
and to define what a field on the Showing Fields tab will show. Conditions were explained in the previous section.
This section will show the Expression Editor in relation to the showing fields tab specifically. However, the ideas
explained here may also be used in the Condition Constructor window.

The Condition Constructor window, shown below has three main areas:

• Expression Box
• Tab Area
• Button Panel

The Expression Box shows the current expression that has been built using the various features and
functionality of the Tab Area.

The Tab Area is where the pieces of the expression are selected. It is made up of 3 tabs:

• Field
• Constant
• Function

Regardless of tab, when the expression part is ready to be inserted into the Expression Box above, the Insert
button is clicked to insert the part from the Tab Area into the Expression Box. The value from the Tab Area will
always be inserted into the current cursor position of the Expression Box.

Evolution Query Builder

3/15/2007 - 25

1.4.3.1 Field Tab

The Field Tab allows the user to select a table, and then a field within that table to insert into the expression. The
table and field chosen must exist in the current level of the query in order to be available for selection here. With
the table and field selected here, the expression part is ready to be inserted into the Expression Box.

Evolution Query Builder

3/15/2007 - 26

1.4.3.2 Constant Tab

The Constant Tab allows the user insert a constant (unchanging value) into the Expression Box. For every
constant, a type must be selected from the Type dropdown. The selected type will drive how the value of the
constant is to be defined. For example, if Integer is selected as the type, the value of the constant must be a
whole number, negative of those numbers or 0 (…-2, -1, 0, 1, 2…).

The following is a description of each type.

• Date – Date formatted as day/month/year. The year may be either a 2- or 4-digit year.
• Float – Number, possibly with decimal positions.
• Integer – Number with no decimal positions.
• String – Value made up of any combination of numeric, alphabetic or punctuation characters. Values of this

type will always be enclosed in single quotes.
• Lookup – Special type that shows a list of valid values for a single table field located in the Left Part

Expression box. For example, if the Left Part Expression box has the Check_Date field from the Pr table,
selection the Lookup type in the Right Part Expression box’s Expression Editor will show a list of check dates
that exist in the current company.

• Parameter – Special type only for use in queries that are part of Report Writer or Report Master reports. Not
for use inside Report Writer Wizard reports. Used to pass values from Report Writer or Report Master into
Query Builder for use in conditions and the Showing Fields tab. For example, there is a parameter in Report
Master called Payrolls that is part of one of the report templates. That parameter stores a list of payrolls
selected on the input form of the report at runtime. That parameter may be used in queries inside this report
to create a condition where the key value of the Pr table, Pr_Nbr, is equal to the Payrolls parameter, filtering
out all payrolls other than those selected.

• Null – Empty value.
• True – Boolean value True. Can be used in function that require boolean parameters. Can also be used to

as the left or right part of a condition to filter based on whether a condition in the other part is true.
• False – Boolean value False. Can be used in function that require boolean parameters. Can also be used to

as the left or right part of a condition to filter based on whether a condition in the other part is false.

Evolution Query Builder

3/15/2007 - 27

If the Date, Float, Integer or String types are selected, the Value box will appear. After the value is entered in the
Value box, Enter or Return may be pressed on the keyboard to insert the constant into the Expression Box.

If the Lookup type is selected, a grid will appear below the Type dropdown with a list of valid values for the Left
Part Expression. The item selected may be double-clicked on to insert it into the Expression Box.

Evolution Query Builder

3/15/2007 - 28

If the Parameter type is selected, the Value box will appear to the right of the type dropdown. If the query is
inside of a Report Writer report, the parameter name must be typed into the Value box. If the query is inside of a
Report Master report, the Value box will be a dropdown from which any parameter in the parent report may be
selected.

Evolution Query Builder

3/15/2007 - 29

1.4.3.3 Function Tab

The Function Tab allows the user to apply a variety of predefined functions to field values, calculated values,
variables or constants. Each function does something different and has a brief piece of documentation that
describes what the function does, as well as its syntax for correct use.

The available functions are divided into five folders by category:

• Type Conversion
• String Routines
• Date Routines
• Math Routines
• Misc

The category folders are located in the left pane of the Function Tab.

Evolution Query Builder

3/15/2007 - 30

Double-clicking on a folder will show the functions inside that folder.

In the Expression Editor window above, the Type Conversion folder has been expanded and the AsString function
selected in the left pane of the Function Tab. With this function selected, a description of what it does appears in
the right pane of the tab:

Converts AValue to string value.

This description refers to a variable AValue. The description is saying that the function will convert the value
found in the AValue variable to a string, which is a specific type of data.

With the AsString function selected, an emboldened line of text appears below the two panes in the Function Tab.
This text shows the syntax of the function.

Function AsString(AValue: Variant; AConvertNull: Boolean): String

The first word, “Function”, says that this is a function.

The name of the function immediately follows the word “Function”. This means that the name of the function is
“AsString”, since that is what immediately follows “Function”.

Next is the opening parenthesis. This means that the following text describes the variables being passed into the
function for the function to perform its job on. Each variable being passed to the function is separated from the
next by a semicolon. Within each variable is the variable name and variable type, separated further by a colon.

Evolution Query Builder

3/15/2007 - 31

1.4.3.4 Button Panel

The Expression Editor’s Button Panel allows a user to incorporate arithmetic into the Expression Box. For
example, to show a dollar amount in a report with an implied decimal point (i.e. $125.50 would show as 12550),
the simplest way is to multiply the dollar amount by 100. This is shown below using the example of multiplying
the Federal_Taxable_Wages field from the Pr_Check table.

• First, the value to convert must be inserted into the Expression Box. In this case, that is the Pr_Check table

and the Federal_Taxable_Wages field.

Evolution Query Builder

3/15/2007 - 32

• The value in the Expression box needs to be multiplied by 100. The concatenation operator is the asterisk (*).
To do this, while the cursor is to the right of the Federal_Taxable_Wages field, the Multiply button is clicked
to insert the multiplication operator after the field that is to be multiplied by 100.

Evolution Query Builder

3/15/2007 - 33

• With the value to multiply and the multiplication operator in the Expression box, the last piece of the
expression is the value to multiply by. The number to multiply by is always going to be 100 in this example.
Because the value will always be the same, it is a constant, to be defined on the Constant Tab. The constant
is the number 100, which is an integer. This means that Integer is the appropriate selection in the Type
dropdown. The constant 100 needs to be inserted immediately after the multiplication operator.

• Clicking the OK button in the lower right of the Expression Editor window saves the changes to the
expression.

Evolution Query Builder

3/15/2007 - 34

In the case of string expressions, the Button Panel allows for the concatenation of multiple strings into a single
string.

For example, the user may wish to see the full name of the employee in a single field. In Evolution, the employee
name is stored in three different string-type fields in the Cl_Person table: First_Name, Middle_Initial and
Last_Name. It is possible to show all three of these table fields in the same query field via concatenation. This
example is shown below. The ending format will be LastName, FirstName MiddleInitial

• The first value to be concatenated must be inserted into the Expression Box. In this case, that is the

Cl_Person table and the Last_Name field.

Evolution Query Builder

3/15/2007 - 35

• The value in the Expression box needs to be concatenated with the next part of the expression. The
concatenation operator is the plus sign (+). This must be inserted into the Expression Box after the
Last_Name field. To do this, while the cursor is to the right of the Last_Name field, the Add button is clicked.

Evolution Query Builder

3/15/2007 - 36

• The next string to be concatenated is the comma character. This is a constant, so it is inserted in the same
way that any other string constant would be inserted. This needs to be done while the cursor is immediately
following the previously added concatenation operator.

Evolution Query Builder

3/15/2007 - 37

• The next piece to be inserted is another concatenation operator, done the same way as the first, with the
cursor immediately following the comma portion of the expression.

• The First_Name field comes next. This is inserted the same way the Last_Name field was inserted,
immediately following the last concatenation operator.

• Another concatenation operator is inserted.

• The next string to be concatenated is the space between the First_Name and Middle_Initial fields. This is
inserted the same way the comma was inserted, replacing the comma character with a space character in the
Value box.

• One more concatenation operator is inserted here.

• The final piece is the Middle_Initial field. This field is inserted just like the other two fields inserted into the
Expression Box in this example. The end result should look like this:

Evolution Query Builder

3/15/2007 - 38

1.4.4 Keys and Joins

1.4.4.1 Keys

Sometimes data must be selected from two or more tables to get the desired result. Joins allow this to be
accomplished.

Database tables are often referenced by other database tables via the key fields of those tables. A table’s
primary key is the column in that table with a unique value for each row of data. The purpose of referencing a
table via its key is to associate data from one table with that of another.

For the examples in this section, the tables involved are Pr_Check and Ee. These two tables are associated with
one another via the primary key of the Ee table – Ee_Nbr. The Ee_Nbr field in the Pr_Check table indicates the
owner of that check.

In the Ee table below, the Ee_Nbr field is the primary key, meaning that no two rows can have the same value in
the Ee_Nbr field. The Ee_Nbr field is unique and can be used to distinguish between two different people,
regardless of other employee similarities.

In the tables below:

• The Ee_Nbr column stores the primary key of the Ee table .
• The Pr_Check_Nbr column stores the primary key of the Pr_Check table .
• The Ee_Nbr column in the Pr_Check table is used to reference a unique employee in the Ee table without

using the employee’s Custom_Employee_Number.

Ee:
Ee_Nbr Custom_Employee_Number
1 A100
2 A200
3 B100
4 C100

Pr_Check:
Pr_Check_Nbr Payment_Serial_Number Check_Type Ee_Nbr
1 1024 R 1
2 1025 R 2
3 1026 R 4
4 1027 R 1
5 1028 R 2
6 1029 R 4
7 1030 M 1
8 1031 M 4

Evolution Query Builder

3/15/2007 - 39

1.4.4.2 Joins

In Query Builder, there are two types of joins – inner and outer. Joins are the way data from one table may be
matched up with data from a different table via that second table’s primary key. They are created by dragging the
field to be joined on from one table, and dropping that field either into an empty part of the Work Area, or on top of
the other table to be involved in the join.

Dragging and dropping a foreign key field from a table in the Work Area into an empty part of the Work Area will
add the table whose primary key field was dropped. In the example below, the Pr_Check table has been
dropped into the work area already. The Ee_Nbr field was dragged and dropped into the Work Area from the
Pr_Check table, adding the Ee table since the Ee_Nbr field is the primary key of the Ee table:

By default, the tables are joined via an inner join. That join can be changed to an outer join, as explained later.

Evolution Query Builder

3/15/2007 - 40

In the case that both tables already exist in the query with no join, they can be joined in a similar way. The
Ee_Nbr field can be dragged from the Pr_Check table and dropped onto the Ee table. The Add Join window will
appear as shown below:

The Add Join window has the following dropdowns:

• Table 1 – The first table to be included in the join.
• Field [Table 1] – The field from Table 1 being joined and matched on.
• Join – The type of join. Join types include:

o INNER JOIN
o OUTER [Table 1]
o OUTER [Table 2]

• Table 2 – The second table to be included in the join.
• Field [Table 2] – The field from Table 2 being joined and matched on.

The Table 1 and Table 2 dropdowns will include any table that exists in the currently selected subquery.

The Field dropdowns will show all fields included in the table selected in the corresponding Table dropdown

For the outer join type options, the table specified is referred to as Table 2 in the examples that follow.

Evolution Query Builder

3/15/2007 - 41

INNER JOIN – Returns all rows from both tables where the value of the field being joined on in table 1 also exists
in table 2.

In the example below, if there are rows in Ee that do not have matches in Pr_Check (in this example, Ee_Nbr =
3), those rows will not be included in the result.

The following example shows an inner join represented by a solid black line. This query will return
Custom_Employee_Number, Payment_Serial_Number and Check_Type for all employees for which at least
one matching check exists:

Evolution Query Builder

3/15/2007 - 42

Below is a diagram showing the Ee table on the left and the Pr_Check table on the right. Lines are drawn linking
each row in the Pr_Check table with its corresponding row in the Ee table:

Ee_Nbr Custom_Employee_Number
1 A100
2 A200
3 B100
4 C100

Based on the example tables above, this query will return the following result:

Custom Employee Number Payment_Serial_Number Check_Type
A100 1024 R
A100 1027 R
A100 1030 R
A200 1025 R
A200 1028 R
C100 1026 R
C100 1029 M
C100 1031 M

Custom_Employee_Number B100 does not exist in the Pr_Check table. As a result, the inner join excludes
data where Custom_Employee_Number = B100.

Pr_Check_Nbr Payment_Serial_Number Check_Type Ee_Nbr
1 1024 R 1
2 1025 R 2
3 1026 R 4
4 1027 R 1
5 1028 R 2
6 1029 R 4
7 1030 M 1
8 1031 M 4

Evolution Query Builder

3/15/2007 - 43

OUTER JOIN – Returns all rows from table 1, even if there are no matches in table 2. If rows exist in table 1 that
do not have matches in table 2, those rows from table 1 will still be listed.

For outer joins, Query Builder allows the user to specify which table is table 1 and which is table 2. Right-clicking
on a pre-existing and selecting the Join type option enables the user to select one of two OUTER options. Each
will specify a different table. The table specified in the selected option will be table 2 for that outer join.

In the example below, if there are rows in Ee that do not have matches in Pr_Check (in this example, Ee_Nbr =
3), those rows will still be included in the result.

The following example shows an outer join represented by a dark red line, half solid and half dashed. The solid
half is connected to the table in which data must exist in order for it to be included in the result (table 1). The
dashed half is connected to the table in which data may or may not exist (table 2).

Data returned by an outer join includes:

• All rows from table 1, regardless of whether a matching row exists in table 2.
• Those rows in table 2 for which a match exists in table 1.

If table 2 includes rows that do not match those in table 1, those non-matching rows from table 2 will not be
included in the result.

This query will return Custom_Employee_Number, Payment_Serial_Number and Check_Type for all
employees, regardless of if a matching check exists:

Evolution Query Builder

3/15/2007 - 44

Below are two tables being joined via an outer join.

Ee_Nbr Custom_Employee_Number
1 A100
2 A200
3 B100
4 C100

If this outer join is performed on the Ee and Pr_Check tables above, the result will look like this:

Custom Employee Number Payment_Serial_Number Check_Type
A100 1024 R
A100 1027 R
A100 1030 R
A200 1025 R
A200 1028 R
B100
C100 1026 R
C100 1029 M
C100 1031 M

Note the row returned where Custom_Employee_Number = B100. There is no matching row in the Pr_Check
table, so the result for that Ee row consists of the Custom_Employee_Number with no
Payment_Serial_Number or Check_Type.

An extra option for outer joins is available by right-clicking on a particular table or subquery. The Isolate Filtering
from Outer Join option tells Query Builder whether to apply the outer join before any conditions in that table, or
vice versa. With this option checked, the outer join is performed first, filtering the result of the outer join. With the
option unchecked, data is selected from the tables involved in the outer join, the individual tables are filtered as
defined in the query and then the outer join is performed.

Pr_Check_Nbr Payment_Serial_Number Check_Type Ee_Nbr
1 1024 R 1
2 1025 R 2
3 1026 R 4
4 1027 R 1
5 1028 R 2
6 1029 R 4
7 1030 M 1
8 1031 M 4

Evolution Query Builder

3/15/2007 - 45

1.4.5 Table Parameters

Any table may have table parameters. Those parameters may be viewed in the Parameters of “<selected
table>” dialog. A table parameter is a kind of condition applied to the table so that the set of data being worked
with in that table is limited for efficiency. For example, almost every table in Query Builder has the As Of Date
parameter by default. This parameter is used to determine as of what date data is to be viewed. By default, this
parameter is set to Current Data.

Evolution Query Builder

3/15/2007 - 46

The parameters dialog shows the selected table’s parameters in a list in the top of the dialog.

The bottom portion of the parameters dialog allows the user to define the parameter using one of the four
available buttons:

• Constant Value
• External Parameter
• QB Expression
• Empty

As of the date this document was written, the only useful button here is the Constant Value button. The other
three will be useful in the future as virtual tables are added and completed.

Evolution Query Builder

3/15/2007 - 47

Because of the fact that data changes are tracked historically, that historic data may be fetched using Query
Builder. By default, the As Of Date parameter is defined to fetch current data only. This is done by selecting
Current data in the Parameter Value dropdown.

To fetch all historic data for a table, select Historical Data in the Parameter Value dropdown for the As Of Date
parameter, shown below.

This can be a very useful troubleshooting tool when an issue may have possibly been caused by a field value
being incorrect as of a specific date.

Evolution Query Builder

3/15/2007 - 48

Data may also be fetched from a table as of a specific date and time. To do this, overwrite the Parameter Value
dropdown with the date and time data is to be fetched as of. The format here is m/d/yyyy hh:mm:ss xm, where
the time portion is optional. It is important to note that in Evolution terms, 1/1/2005 is before 1/1/2005 12:00:00
AM.

Defining the parameter above will return the row of data for that table that is effective as of 1/1/2005 11:59:59 PM,
which happens to be the last second of the day.

The earliest effective date for 1/1/2005 is the date with no time. This is shown below.

Evolution Query Builder

3/15/2007 - 49

1.4.6 Subqueries

A subquery is a query that is part of another query. It is displayed in the Work Area in almost the same way as a
table, except the title bar of a subquery is green instead of blue.

Evolution Query Builder

3/15/2007 - 50

The purpose of a subquery is to segregate different parts of a query from each other. This is useful when there
are two pieces of information stored in the same column of the same table, but data from that column needs to be
shown in different columns in the query result. An example of this would be a query that is to show a sum of all
earnings in one column, and a sum of all deductions in another column. The amount of an earning or deduction is
stored in the Pr_Check_Lines table in the Amount column. A query that included no subqueries and selected
the sum of earnings and deductions for each employee would look like this:

A condition exists on the Cl_E_Ds table that allows the query to only return rows in the Pr_Check_Lines table
where the matching row in the Cl_E_Ds table has a value in the E_D_Code_Type column that starts with “E” or
“D”. This query will return Custom_Employee_Number in the first column, and the sum of all earnings and
deductions in the Amount column. This is because the condition on the Cl_E_Ds table is applied to the whole
query and cannot be applied to single fields in the Showing Fields Tab.

Evolution Query Builder

3/15/2007 - 51

In order to get the desired result, this query must be split up into two subqueries. Each subquery will look much
like the one just shown. There will be three differences:

• The condition on the Cl_E_Ds table will be modified to only include “E” in the Right Part for one subquery,

and “D” in the Right Part for the other subquery.
• The Ee_Nbr field will be included in each sub query’s Showing Fields tab for joining purposes in the parent

query.
• The Ee table will not be included in each subquery. It will be included in the parent query, and an outer join

will link the Ee table to each subquery.

To create this query, the following steps are taken, starting with the query just shown:

• Right-click on the Ee table in the Work Area and select Remove Table to remove the table from the query.

Evolution Query Builder

3/15/2007 - 52

• Double-click on the Ee_Nbr field inside the Pr_Check table in the Work Area to add it to the Showing Fields
Tab.

Evolution Query Builder

3/15/2007 - 53

• Drag and drop the Ee_Nbr field in the Showing Fields Tab on top of the Amount field directly above it to
rearrange the fields in the Showing Fields Tab so the Ee_Nbr is first.

Evolution Query Builder

3/15/2007 - 54

• Right-click on the Main Statement in the Query Structure Area and select Add Parent Query.

Evolution Query Builder

3/15/2007 - 55

• Select the Main Statement in the Query Structure area. Right-click on the green subquery in the Work Area
and select Copy.

Evolution Query Builder

3/15/2007 - 56

• Right-click in an empty part of the Work Area and select Paste Table to add another copy of the subquery to
the Main Statement.

Evolution Query Builder

3/15/2007 - 57

• Right-click on each subquery in the Query Structure Area inside the Main Statement and select Edit Query
Description to rename each subquery. Name one “Earnings” and the other “Deductions”.

• Select the Earnings subquery in the Query Structure Area. Open the Cl_E_Ds table in the Work Area,
double-click on the condition and modify it to look like the one below and click OK:

Evolution Query Builder

3/15/2007 - 58

• Double-click on the Amount field in the Showing Fields Tab. Change the Alias of the field to “Earnings” and
click OK:

• Select the Deductions subquery in the Query structure Area. Open the Cl_E_Ds table in the Work Area,
double-click on the condition and modify it to look like the one below and click OK:

• Double-click on the Amount field in the Showing Fields Tab. Change the Alias of the field to “Deductions”
and click OK:

Evolution Query Builder

3/15/2007 - 59

• Select the Main Statement in the Query Structure Area. Drag and drop the Ee table from the All Tables Area
into the Work Area:

• Drag and drop the Ee_Nbr field from the Ee table in the Work Area onto the Earnings subquery. When the
Add Join window appears, create an outer join where the Earnings subquery is selected, referenced by the
subquery name in the upper right corner of the subquery – t4 in this example – followed by the word
“SubQuery”, then click OK:

Evolution Query Builder

3/15/2007 - 60

• Drag and drop the Ee_Nbr field from the Ee table in the Work Area onto the Deductions subquery. When
the Add Join window appears, create an outer join where the Deductions subquery is selected, referenced
by the subquery name in the upper right corner of the subquery – t5 in this example – followed by the word
“SubQuery”, then click OK:

• The end result should look similar to the screen below. There should be two outer joins, each one linking a
subquery to the Ee table, joining on the Ee_Nbr field in each case:

Evolution Query Builder

3/15/2007 - 61

• Add the Custom_Employee_Number field from the Ee table, Earnings field from the Earnings subquery
and Deductions field from the Deductions subquery to the Showing Fields Tab:

Evolution Query Builder

3/15/2007 - 62

1.4.7 Unions

The purpose of a union is to combine the results of one subquery with the results of another. Each subquery in a
union is referred to as a Union Item in Query Builder.

In a union, all corresponding columns in each union item need to have the same data type. So, if the union item
#1’s first column is of type Integer, then each of the remaining union items must also have a first column of type
Integer. The second columns of all union items must be of matching type as well – String for example.

All rows returned by each union item will be shown as a separate row in the main union’s results. For example,
the Pr_Check table includes all federal tax information. Without a union, it would be difficult to return various
federal taxes on the same check on different rows. The union makes this a much simpler task, as explained
below.

• Starting with an empty Main Statement, select the Main Statement in the Query Structure Area and add the

Pr_Check table to the Work Area:

Evolution Query Builder

3/15/2007 - 63

• Add a String constant to the Showing Fields Tab. Make the Field Alias “Type”, and the value “Federal Tax”:

Evolution Query Builder

3/15/2007 - 64

• Add the Federal_Tax field from Pr_Check to the Showing Fields Tab:

Evolution Query Builder

3/15/2007 - 65

• Right-click on the Main Statement in the Query Structure Area and select Add Parent Query (UNION):

Evolution Query Builder

3/15/2007 - 66

• Select the Union of SubQueries in the Query Structure Area. Right-click on the union item with “#1” in the
upper-right corner and copy it as before, pasting a copy into the Work Area. Do this once more so that there
are three union items in the Work Area with the Union of SubQueries selected in the Query Structure Area:

Evolution Query Builder

3/15/2007 - 67

• Right-click on each union item in the Query Structure Area and rename them to “Federal”, “OASDI” and
“Medicare”:

Evolution Query Builder

3/15/2007 - 68

• Select OASDI in the Query Structure Area. Double-click the Type constant and change the value to “OASDI”.
Remove Federal_Tax from the Showing Fields tab and add the Ee_Oasdi_Tax field:

Evolution Query Builder

3/15/2007 - 69

• Select Medicare in the Query Structure Area. Double-click the Type constant and change the value to
“Medicare”. Remove Federal_Tax from the Showing Fields tab and add the Ee_Medicare_Tax field:

The union just created will show one row each for federal tax, OASDI and Medicare. In order to see what check
each tax belongs to, the Payment_Serial_Number field needs to be included in the list of fields on the union’s
Showing Fields Tab. However, fields cannot be added to the Showing Fields Tab of a union by double-clicking or
dragging and dropping fields from tables in the Work Area to the Showing Fields Tab. In a union, they are added
by adding the field to the Showing Fields Tab of each individual union item.

Evolution Query Builder

3/15/2007 - 70

As mentioned earlier, it is a requirement of the union that all union items in the same union are structurally
identical, with the same number of columns, and with each column in the same position in each union item having
the same data type. Query Builder will tell the user if there is a problem with a union item while that union is
selected in the Query Structure Area. The name of the problematic union item will be red in the green bar at the
top of that union item.

Payment_Serial_Number needs to be added to the union by adding this field to the Showing Fields Tab in each
union item in the same place – in this case the third column. In the union shown below, the second two union
items have red names. The problem is that Payment_Serial_Number has been added to the Federal union
item, but not the OASDI or Medicare union items:

Evolution Query Builder

3/15/2007 - 71

This problem is resolved by adding the Payment_Serial_Number to the Showing Fields Tab for the OASDI and
Medicare union items. Once that is done, all union item names should turn white:

Evolution Query Builder

3/15/2007 - 72

1.4.8 Other Useful Information and Resources

Sample Queries can be provided upon request. Email to info@paycoinc.com

